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Abstract. In this paper we study the oscillation criteria for the second order nonlinear
differential equation with delay and advanced arguments of the form

([x(t) + a(t)x(t− σ1) + b(t)x(t + σ2)]
α)′′ + q(t)xβ(t− τ1) + p(t)xγ(t + τ2) = 0, t ≥ t0

where σ1, σ2, τ1 and τ2 are nonnegative constants and α, β and γ are the ratios of odd

positive integers. Examples are provided to illustrate the main results.

1. Introduction

In this paper, we consider the following second order nonlinear differential equa-
tion with delay and advanced arguments of the form

(1.1) ([x(t) + a(t)x(t− σ1) + b(t)x(t + σ2)]
α)′′+q(t)xβ(t−τ1)+p(t)xγ(t+τ2) = 0
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for all t ≥ t0, subject to the following conditions:

(A1) a(t) and b(t) are non negative and twice continuously differentiable functions
on [t0,∞) and there exist constants a and b such that a(t) ≤ a < ∞ and
b(t) ≤ b < ∞;

(A2) q(t) and p(t) are nonnegative continuous functions on [t0,∞) and are not
identically zero for infinitely many values of t;

(A3) σ1, σ2, τ1 and τ2 are nonnegative constants and α, β and γ are the ratios of
odd positive integers.

By a solution of equation (1.1), we mean a function x(t) ∈ C[Tx,∞) defined
for all t ≥ t0 −max(σ1, τ1) and satisfying the equation (1.1) for all t ≥ Tx ≥ t0. A
nontrivial solution of equation (1.1) is said to be oscillatory if it has infinitely many
zeros on [t0,∞), otherwise it is said to be nonoscillatory. Equation (1.1) is said to
be oscillatory if all its nontrivial solutions are oscillatory.

In recent years, many results have been obtained on the oscillation of solutions
of different types of differential equations, see [2, 3, 7, 8, 9, 14, 17, 18, 19, 22] .

In 1987 the authors in [15] and in 1992 the authors in [9] obtained some oscil-
lation criteria for the second order nonlinear differential equation of the form

(
r(t)|((x(t) + p(t)xτ(t))′)γ−1|(x(t) + p(t)xτ(t))′

)′
+ q(t)|x(σ(t))|γ−1x(σ(t)) = 0.

(1.2)

In 2003 the authors in [7] found some sufficient conditions for the oscillation of the
second order half-linear differential equation of the form

(1.3)
(
r(t)|x′(t)|γ−1x′(t)

)′
+ q(t)|x(τ(t))|γ−1x(τ(t)) = 0, t ≥ t0

by using Riccatti transformation.
In [3, 8, 18] the authors obtained some oscillation criteria for the following

differential equation with mixed arguments

(1.4) (x(t) + p(t)x(t− τ1) + q(t)x(t + τ2))
′′ = q1(t)x(t−σ1)+q2(t)x(t+σ2), t ≥ t0.

In [12, 23], the authors established some oscillation results for the following higher
order neutral functional differential equation of the form

(1.5) (x(t) + ax(t− h) + Cx(t + H))(n) + qx(t− g) + Qx(t + G) = 0, t ≥ 0

where q and Q are nonnegative real constants.
In [21], the authors studied the oscillation of equation (1.1) for the case 0 < γ =

β < 1, γ = β = 1, 1 ≤ γ = β > α, 1 ≤ γ = β < α. Motivated by this we study the
oscillation of equation (1.1) for the cases 0 < β ≤ 1, γ ≥ 1 and β ≥ 1, 0 ≤ γ ≤ 1
and different values of a and b.

In the sequel when we write a functional inequality without specifying its domain
of validity, we assume that it holds for all sufficiently large values of t.
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2. Oscillation Theorems

In this section, we establish some sufficient conditions for the oscillation of
all the solutions of equation (1.1). For simplicity, we use the following notations
throughout this paper without further mention.

z(t) = [x(t) + a(t)x(t− σ1) + b(t)x(t + σ2)]α;
Q(t) = min(q(t), q(t− σ1), q(t + σ2));

and

P (t) = min(p(t), p(t− σ1), p(t + σ2)).

We begin with the following lemmas, which will be useful in proving our main
theorems.

Lemma 2.1. If A ≥ 0, B ≥ 0 and δ ≥ 1, then

(2.1) Aδ + Bδ ≥ 1
2δ−1

(A + B)δ.

Lemma 2.2. If A ≥ 0, B ≥ 0 and 0 < δ ≤ 1, then

(2.2) Aδ + Bδ ≥ (A + B)δ.

The proofs of above two lemmas can be found in [14].

Lemma 2.3. If x(t) is a positive solution of equation (1.1), then z(t) > 0, z′(t) > 0
and z′′(t) ≤ 0 eventually.

Lemma 2.4. If y(t) > 0, y
′
(t) > 0 and y”(t) ≤ 0 for all t ≥ t0 then y(t) ≥ t

2y
′
(t).

for all t ≥ t1 ≥ t0

The proofs of last two lemmas are elementary and hence omitted.

Lemma 2.5. If

lim inf
t→∞

t∫

t−σ

Q(s)ds >
1
e
,

then the differential inequality

y
′
(t) + Q(t)y(t− σ) < 0 for all t ≥ t0

has no positive solution.

Proof. The proof can be found in [13]. 2
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Theorem 2.6. Assume that β > 1, 0 ≤ γ < 1, a ≤ 1, b ≤ 1 and β > α > γ. If the
differential inequality

(2.3) lim inf
t→∞

t∫

t−τ−σ2

P η2(s)Qη1(s)(s− τ − σ2)ds >
2(4β−1)η1ηη1

1 ηη2
2 (1 + aγ + bγ)
e

where η1 =
α− γ

β − γ
, η2 =

β − α

β − γ
and τ = max(τ1, τ2) holds, then every solution of

equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of
generality we may assume that x(t) is a positive solution. Then there exists a
t1 ≥ t0 such that x(t) > 0, x(t − τ1) > 0 and x(t − σ1) > 0 for all t ≥ t1. Then
z(t) > 0 for all t ≥ t1.

Define a function y(t) by

y(t) = z(t) + aγz(t− σ1) + bγz(t + σ2)

for all t ≥ t1. Now

0 = y′′(t) + q(t)xβ(t− τ1) + p(t)xγ(t + τ2) + aγq(t− σ1)xβ(t− σ1 − τ1)
+aγp(t− σ1)xγ(t− σ1 + τ2) + bγq(t + σ2)xβ(t + σ2 − τ1)
+bγp(t + σ2)xγ(t + σ2 + τ2)

≥ y′′(t) + Q(t)
[
xβ(t− τ1) + aγxβ(t− σ1 − τ1) + bγxβ(t + σ2 − τ1)

]
+

P (t) [xγ(t + τ2) + aγxγ(t− σ1 + τ2) + bγxγ(t + σ2 + τ2)] for all t ≥ t1.

Using the fact a ≤ 1, b ≤ 1, β > 1 and 0 < γ < 1, the last inequality becomes

0 ≥ y′′(t) + Q(t)
[
xβ(t− τ1) + aβxβ(t− σ1 − τ1) +

bβ

2β−1
xβ(t + σ2 − τ1)

]
+

P (t) [xγ(t + τ2) + aγxγ(t− σ1 + τ2) + bγxγ(t + σ2 + τ2)] for all t ≥ t1.

Now using the Lemma 2.2 and Lemma 2.1 twice on the first and second part of the
right hand side of the last inequality, respectively, we have

(2.4) 0 ≥ y′′(t) +
Q(t)
4β−1

zβ/α(t− τ1) + P (t)zγ/α(t + τ2) for all t ≥ t1.

From Lemma 2.3, we have z(t) > 0 and z′(t) > 0 and therefore y(t) > 0 and
y′(t) ≥ 0. Now using the monotonicity of z(t) in (2.4), we obtain

(2.5) 0 ≥ y′′(t) +
Q(t)
4β−1

zβ/α(t− τ) + P (t)zγ/α(t− τ)

for all t ≥ t1.
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Let u1η1 =
Q(t)
4β−1

zβ/α(t− τ) and u2η2 = P (t)zγ/α(t− τ). Using the arithmetic-

geometric mean inequality
u1η1 + u2η2

η1 + η2
≥ (uη1

1 uη2
2 )

1
η1+η2 , the last inequality be-

comes

(2.6) 0 ≥ y′′(t) +
(

Q(t)
4β−1

)η1

η−η1
1 P η2(t)η−η2

2 z(t− τ) for all t ≥ t1.

From the definition of y(t), we have

y(t) = z(t) + aγz(t− σ1) + bγz(t + σ2)(2.7)
≤ (1 + aγ + bγ)z(t + σ2) for all t ≥ t1.(2.8)

Using (2.8) in (2.6), we see that

(2.9) 0 ≥ y′′(t) +
(

Q(t)
4β−1

)η1 P η2(t)η−η1
1 η−η2

2

(1 + aγ + bγ)
y(t− τ − σ2) for all t ≥ t1.

Using Lemma 2.4, the last inequality becomes

0 ≥ y′′(t) +
(

Q(t)
4β−1

)η1 P η2(t)η−η1
1 η−η2

2

(1 + aγ + bγ)
(t− τ − σ2)

2
y
′
(t− τ − σ2)(2.10)

for all t ≥ t1. By taking w(t) = y
′
(t), we see that w(t) is a positive solution of the

inequality
(2.11)

0 ≥ w
′
t) +

(
Q(t)
4β−1

)η1 P η2(t)η−η1
1 η−η2

2

(1 + aγ + bγ)
(t− τ − σ2)

2
w(t− τ − σ2) for all t ≥ t1.

Then by Lemma 2.5, we see that the last inequality has no positive solution. This
contradiction completes the proof. 2

Theorem 2.7. Assume that γ > 1, 0 < β < 1, a ≥ 1, b ≥ 1 and γ > α > β. If
the differential inequality

(2.12) lim inf
t→∞

t∫

t−τ−σ2

P η1(s)Qη2(s)(s− τ −σ2)ds >
2(4γ−1)η1ηη1

1 ηη2
2 (1 + aβ + bβ)
e

where η1 =
α− β

γ − β
, η2 =

γ − α

γ − β
and t = max(τ1, τ2) holds, then every solution of

equation (1.1) is oscillatory.

Proof. Let x(t) be a positive solution of equation (1.1) (since the proof of other case
x(t) negative is similar). Then there exists a t1 ≥ t0 such that x(t) > 0, x(t−τ1) > 0
and x(t − σ1) > 0 for all t ≥ t1. Then z(t) > 0 and from equation (1.1), we have
z′(t) > 0 for all t ≥ t1. Define a function y(t) by

(2.13) y(t) = z(t) + aβz(t− σ1) + bβz(t + σ2)
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for all t ≥ t1. Then y(t) > 0 and y′(t) > 0 for all t ≥ t1. Now

0 = y′′(t) + q(t)xβ(t− τ1) + p(t)xγ(t + τ2) + aβq(t− σ1)xβ(t− σ1 − τ1) +
aβp(t− σ1)xγ(t− σ1 + τ2) + bβq(t + σ2)xβ(t + σ2 − τ1) + bβxβ(t + σ2 + τ2)

≥ y′′(t) + Q(t)
[
xβ(t− τ1) + aβxβ(t− τ1 − σ1) + bβxβ(t− τ1 + σ2)

]
+

P (t)
[
xγ(t + τ2) + aβxγ(t + τ2 − σ1) + bβxγ(t + τ2 + σ2)

]

for all t ≥ t1. Since a ≥ 1, b ≥ 1, β < 1, and γ ≥ 1 the last inequality becomes

0 ≥ y′′(t) + Q(t)
[
xβ(t− τ1) + aβxβ(t− τ1 − σ1)

+bβxβ(t− τ1 − σ1) + bβxβ(t− τ1 + σ2)
]

+P (t)
[
xγ(t + τ2) + aγxγ(t + τ2 − σ1) +

bγ

2γ−1
xγ(t + τ2 + σ2)

]
(2.14)

for all t ≥ t1. Now using the Lemmas 2.1 and 2.2 twice on the first and second part
of right hand side of the last inequality, respectively, we have

(2.15) 0 ≥ y′′(t) + Q(t)zβ/α(t− τ1) +
P (t)
4γ−1

zγ/α(t + τ2).

Since z(t) is nondecreasing the inequality (2.15) becomes

(2.16) 0 ≥ y′′(t) + Q(t)zβ/α(t− τ) +
P (t)
4γ−1

zγ/α(t− τ)

for all t ≥ t1.

Let u2η2 = Q(t)zβ/α(t− τ) and u1η1 =
P (t)
4γ−1

zγ/α(t− τ). Then using arithmetic
and geometric mean inequality

u1η1 + u2η2

η1 + η2
≥ (uη1

1 uη2
2 )

1
η1+η2 ,

the last inequality becomes

(2.17) 0 ≥ y′′(t) + Qη2(t)
(

P (t)
4γ−1

)η1

η−η1
1 η−η2

2 z(t− τ) for all t ≥ t1

Now from the monotonicity of z(t), we have

(2.18) y(t) = z(t)+aβz(t−σ1)+bβz(t+σ2) ≤ (1+aβ +bβ)z(t+σ2) for all t ≥ t1.

Using the inequality (2.18) in the inequality (2.17), we see that

(2.19) 0 ≥ y′′(t) +
(

P (t)
4γ−1

)η1 Qη2(t)η−η1
1 η−η2

2

(1 + aβ + bβ)
y(t− τ − σ2) for all t ≥ t1.
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Using Lemma 2.4, the inequality (2.19) becomes

(2.20) 0 ≥ y′′(t) +
(

P (t)
4γ−1

)η1 Qη2(t)η−η1
1 η−η2

2

(1 + aβ + bβ)
(t− τ − σ2)

2
y
′
(t− τ − σ2)

for all t ≥ t1. By taking w(t) = y
′
(t), we see that w(t) is a positive solution of the

inequality

(2.21) 0 ≥ w
′
t) +

(
P (t)
4γ−1

)η1 Qη2(t)η−η1
1 η−η2

2

(1 + aβ + bβ)
(t− τ − σ2)

2
w(t− τ − σ2)

for all t ≥ t1. But by Lemma 2.5, we see that the inequality (2.21) has no positive
solution. This contradiction completes the proof. 2

Theorem 2.8. Assume that β ≥ 1, 0 ≤ γ < 1, a ≥ 1, b < 1 and β > α > γ. If the
differential inequality

(2.22) lim inf
t→∞

t∫

t−τ−σ2

P η2(s)Qη1(s)(s− τ − σ2)ds >
2(4β−1)ηη1

1 ηη2
2 (1 + aβ + bγ)
e

where η1 =
α− γ

β − γ
, η2 =

β − α

β − γ
and τ = max(τ1, τ2) holds, then every solution of

equation (1.1) is oscillatory.

Theorem 2.9. Assume that β ≥ 1, 0 ≤ γ < 1, a < 1, b ≥ 1 and β > α > γ.

(2.23) lim inf
t→∞

t∫

t−τ−σ2

P η2(s)Qη1(s)(s− τ − σ2)ds >
2(4β−1)ηη1

1 ηη2
2 (1 + aγ + bβ)
e

where η1 =
α− γ

β − γ
, η2 =

β − α

β − γ
and τ = max(τ1, τ2) holds , then every solution of

equation (1.1) is oscillatory.

The proofs of Theorem 2.8 and Theorem 2.9 are similar to that of Theorem 2.6,
and hence the details are omitted.

Theorem 2.10. Assume that γ ≥ 1, 0 < β < 1, a < 1, b ≥ 1 and β > α > γ.

(2.24) lim inf
t→∞

t∫

t−τ−σ2

P η1(s)Qη2(s)(s− τ − σ2)ds >
2(4γ−1)ηη1

1 ηη2
2 (1 + aβ + bγ)
e

where η1 =
β − α

β − γ
, η2 =

α− γ

β − γ
and τ = max(τ1, τ2) holds, then every solution of

equation (1.1) is oscillatory.
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Theorem 2.11. Assume that γ ≥ 1, 0 < β < 1, a ≥ 1, b < 1 and β > α > γ. If
the differential inequality

(2.25) lim inf
t→∞

t∫

t−τ−σ2

P η1(s)Qη2(s)(s− τ − σ2)ds >
2(4γ−1)ηη1

1 ηη2
2 (1 + aγ + bβ)
e

where η1 =
β − α

β − γ
, η2 =

α− γ

β − γ
and τ = max(τ1, τ2) holds, then every solution of

equation (1.1) is oscillatory.

The proofs of Theorem 2.10 and Theorem 2.11 are similar to that of Theorem
2.7, and hence the details are omitted.

Example 2.12. Consider the differential equation

(x(t) +
1
27

x(t− 1) + x(t + 2))
′′

+
q

t
x3(t− 2) +

p

t
x1/3(t + 1) = 0, for all t ≥ 2,

where q and p are positive constants. Here a =
1
27

, b = 1, q(t) =
q

t
, p(t) =

p

t
,

α = 1, β = 3, γ = 1
3 , σ1 = 1, σ2 = 2, τ1 = 2 and τ2 = 1.

Then η1 =
α− γ

β − γ
=

1
4
, η2 =

β − α

β − γ
=

3
4

and τ = max(τ1, τ2) = 2,

Q(t) = min
(

q

t
,

q

t− 1
,

q

t + 2

)
=

q

t + 2

P (t) = min
(

p

t
,

p

t− 1
,

p

t + 2

)
=

p

t + 2

By Theorem 2.9 if

(2.26) lim inf
t→∞

t∫

t−τ−σ2

P η2(s)Qη1(s)(s− τ − σ2)ds >
2(4β−1)ηη1

1 ηη2
2 (1 + aγ + bβ)
e

,

then every solution of equation (2.27) is oscillatory. That is, if 3
1
4 p

3
4 q

1
4 >

14
e

, then

every solution of equation (1.1) is oscillatory.

Example 2.13. Consider the differential equation

(x(t) + x(t− 1) +
1
27

x(t + 2))
′′

+
q

t
x

1
3 (t− 2) +

p

t
x(t + 1) = 0, for all t ≥ 2,

where q and p are positive constants. Here a = 1, b =
1
27

, q(t) =
q

t
, p(t) =

p

t
,

α = 1, β =
1
3
, γ = 3, σ1 = 1, σ2 = 2, τ1 = 2 and τ2 = 1.
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Then η1 =
α− β

γ − β
=

1
4
, η2 =

γ − α

γ − β
=

3
4

and τ = max(τ1, τ2) = 2,

Q(t) = min
(

q

t
,

q

t− 1
,

q

t + 2

)
=

q

t + 2

P (t) = min
(

p

t
,

p

t− 1
,

p

t + 2

)
=

p

t + 2

By Theorem 2.11 if

(2.27) lim inf
t→∞

t∫

t−τ−σ2

P η1(s)Qη2(s)(s− τ − σ2)ds >
2(4γ−1)ηη1

1 ηη2
2 (1 + aγ + bβ)
e

,

then every solution of equation (1.1) is oscillatory. That is, if 3
1
4 p

1
4 q

3
4 >

14
e

, then

every solution of equation (1.1) is oscillatory.
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