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Abstract. The main object of this paper is to present two general integral formulas

whose integrands are the integrand given in the integral formula (3) and a finite product

of the generalized Bessel function of the first kind.

1. Introduction and Preliminaries
A remarkably large number of works on the Bessel functions have been provided
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by many researchers due mainly to the demonstrated applications in a wide range
of research areas, for example, acoustics, radio physics, hydrodynamics, and atomic
and nuclear physics (see, e.g., [2],[3],[4],[5],[6],[7], [8],[15],[16],[17],[18],[22],[25]), even
in analytic function theory (see, e.g., [12],[23],[24]). A large number of integral
formulas of a variety of special functions have been developed by many authors
(see, e.g., [1],[2],[7],[9],[10],[11],[14],[16],[18]). Also many integral representations
for the Bessel functions have been presented (see, e.g., [1],[2],[7],[8],[12]).

Motivated by the works of Ali [1], Garg and Mittal [14], Choi and Agarwal [7],
Deniz et al. [12], and Srivastava et al. [22], here, in this paper, we aim at presenting
two generalized integral formulas involving the generalized Bessel function wν (z) of
the first kind, which are expressed in terms of the generalized Lauricella functions
(4), by using the standard inversion of order method in a straightforward manner.
Throughout this paper let C, N, and Z−0 be the sets of complex numbers, positive
integers, and nonpositive integers, respectively, and N0 := N ∪ {0}.

Recall the generalized Bessel function wν(z) of the first kind defined by the
following series (see, e.g., [3, p. 10, Eq. (1.15)]; see also [4, 5, 6], [12, Eq. (1.7)] and
[16, p. 2, Eq. (8)]):

(1) wν(z) =
∞∑

k=0

(−1)kck
(

z
2

)ν+2k

k! Γ(ν + k + 1+b
2 )

,

where z ∈ C \ {0} and b, c, ν ∈ C with <(ν) > −1, and Γ(z) is the familiar Gamma
function (see, e.g., [19, Section 1.1]). Here the multiple-valued function

(
z
2

)ν+2k

may be assumed to take its principal branch for each k ∈ N0. It is noted that the
special case of (1) when b = 1 and c = 1 reduces immediately to the Bessel function
Jν (z) of the first kind as follows:

(2) Jν (z) =
∞∑

k=0

(−1)k
(

z
2

)ν+2k

k! Γ (ν + k + 1)
,

where z ∈ C \ {0} and ν ∈ C with < (ν) > −1. For more detailed special cases of
(1), see also [12].

Also we need to recall the following integral formula (see, e.g., [17]):

(3)
∫ ∞

0

xµ−1
(
x + a +

√
x2 + 2ax

)−λ

dx = 2λa−λ
(a

2

)µ Γ (2µ) Γ (λ− µ)
Γ (1 + λ + µ)

,

provided 0 < < (µ) < < (λ). Srivastava et al. [22] showed that the integral formula
(3) is a change-of-variable version of a much simpler looking integral formula [22,
p. 115, Eq. (14) ], which Ramanujan deduced as an application of his Master
Theorem.
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The generalized Lauricella functions (see, e.g., [21, p. 36, Eq. (19)]) which is
defined by (cf. Srivastava and Daoust [20, p. 454]; see also [21, p. 37] and [9])

(4)

FA:B(1);··· ;B(n)

C:D(1);··· ;D(n)




z1

...
zn


 = FA:B(1);··· ;B(n)

C:D(1);··· ;D(n)

(
[(a) : θ(1), . . . , θ(n)] :

[(c) : ψ(1), . . . , ψ(n)] :

[(b)(1) : φ(1)]; . . . ; [(b)(n) : φ(n)];

[(d)(1) : δ(1)]; . . . ; [(d)(n) : δ(n)];
z1, . . . , zn

)

=
∞∑

k1,...,kn=0
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k1!
· · · z
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kn!
,

where, for convenience,

(5) Ω(k1, . . . , kn) =
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,

the coefficients

(6)

{
θ
(m)
j (j = 1, . . . , A); φ

(m)
j (j = 1, . . . , B(m));

ψ
(m)
j (j = 1, . . . , C); δ

(m)
j (j = 1, · · · , D(m)); ∀m ∈ {1, . . . , n}

are real and positive, and (a) abbreviates the array of A parameters a1, . . . , aA,
(b(m)) abbreviates the array of B(m) parameters

b
(m)
j (j = 1, . . . , B(m)); ∀m ∈ {1, . . . , n},

with similar interpretations for (c) and (d(m)) (m = 1, . . . , n); et cetera.
For the details of convergence of (4), the reader may be referred (for example)

to the earlier work by Srivastava and Daoust [20].

2. Main Results

We establish two (presumably) new generalized integral formulas whose inte-
grands are a finite product of the generalized Bessel functions (1) of the first kind
and the integrand in the integral formula (3), which are expressed in terms of the
generalized Lauricella functions (4), asserted by the following theorems.
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Theorem 1. The following integral formula holds true: For x > 0, λ, µ, νj , bj , cj ∈
C with <(νj) > −1 and 0 < <(µ) < <(λ + νj) (j = 1, 2, . . . , n),
(2.1)∫ ∞

0

xµ−1
(
x + a +

√
x2 + 2ax

)−λ n∏

j=1

ωνj

(
yj

x + a +
√

x2 + 2ax

)
dx

= 21−µ−νs aµ−λ−νs (λ + νs)
Γ (2µ) Γ (λ− µ + νs)
Γ (1 + λ + µ + νs)
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Γ
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× F 2:0,0,...,0
2:1,1,...,1

[ [
1 + λ + νs : 2, 2, . . . , 2

]
,
[
λ− µ + νs : 2, 2, . . . , 2

]
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1 + λ + µ + νs : 2, 2, . . . , 2
]
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[
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]
:

; · · · ;[
ν1 + 1+b1

2 : 1
]

; · · · ;
[
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2 : 1
] ;
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2
1

4a2
, . . . ,

−cny2
n

4a2

]
,

where

(2.2) νs :=
n∑

j=1

νj .

Proof. Using the series definition (1) to the integrand of (2.1) and then interchang-
ing the order of the integral sign and the summation, and finally applying the
integral formula (3) to the resulting integrals, we can get the expression as in the
right-hand side of (2.1). So the detailed account of its proof is omitted.

Theorem 2. The following integral formula holds true: For x > 0, λ, µ, νj , bj , cj ∈
C with <(νj) > −1 and 0 < <(µ) < <(λ + νj) (j = 1, 2, . . . , n), then following
integral formula holds true:
(2.3)∫ ∞

0

xµ−1
(
x + a +

√
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j=1
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)
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= 21−µ−2νs aµ−λ (λ + νs)
Γ (λ− µ) Γ (2µ + 2νs)
Γ (1 + λ + µ + 2νs)
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× F 2:0,0,...,0
2:1,1,...,1

[ [
1 + λ + νs : 2, 2, . . . , 2

]
,
[
2µ + 2νs : 4, 4, . . . , 4

]
:[

1 + λ + µ + 2νs : 4, 4, . . . , 4
]
,
[
λ + νs : 2, 2, . . . , 2

]
:

; · · · ;[
ν1 + 1+b1

2 : 1
]

; · · · ;
[
νn + 1+bn

2 : 1
] ;

−c1y
2
1

16
, . . . ,

−cny2
n

16

]
,

where νs is given in (2.2).
Proof. A similar argument as in the proof of Theorem 1 is seen to establish the
integral formula (2.3). The details of its proof are omitted.



Integrals Involving the Generalized Bessel Functions 135

3. Remarks

Since the case b = c = 1 for the generalized Bessel function (1) of the first kind
reduces to the Bessel function (2) of the first kind, further setting n = 1 in our
main results (2.1) and (2.3) is easily found to yield, respectively, the known results
Equations (2.1) and (2.2) in [7].

Special cases of (4) are established in terms of generalized hypergeometric func-
tions of one and two variables respectively, for example, the generalized hypergeo-
metric function pFq (see, e.g., [19, Section 1.5]) and the Kampé de Fériet function
(see, e.g., [21, p. 27]). There are certain known relationships between the general-
ized Bessel function ων (z) and the cosine function, the hyperbolic cosine function,
the sine function, and the hyperbolic sine function, respectively (see, e.g., [16]). So
our main results (2.1) and (2.3) can produce many interesting and potentially useful
special cases, whose detailed illustrations are omitted.
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[5] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debre-
cen, 731(2)(2008), 155–178.
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