KYUNGPOOK Math. J. 56(2016), 125-130 http://dx.doi.org/10.5666/KMJ.2016.56.1.125 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Difference of Two Composition Operators on L^2 and H^2

Τακαμικό Νακαζι

Professor Emeritus Hokkaido University Sapporo 060-0810, Japan e-mail: tnakazi70@gmail.com

ABSTRACT. A finite rank difference of two composition operators is studied on a Hilbert Lebesgue space or a Hilbert Hardy space.

1. Introduction

Let (X, \mathcal{B}, m) be a finite complete Borel measure space and let $\phi : X \to X$ be a measurable transformation, that is, $\phi^{-1}(E) \in \mathcal{B}$ for any $E \in \mathcal{B}$. As a typical example of (X, \mathcal{B}, m) , (1) X is a unit circle ∂D or a closed unit disc $\partial D \cup D$, (2) \mathcal{B} is a Borel σ -algebra, (3) m is a normalized Lebesgue measure on ∂D or a normalized area measure on $\partial D \cup D$.

 $L^2 = L^2(\partial D)$ denotes the usual Lebesgue space and $H^2 = H^2(D)$ denotes the usual Hardy space. Let $C = C(\partial D)$ be the set of all continuous functions on ∂D and A = A(D) the disc algebra on \overline{D} .

For a measurable function f on X, $(C_{\phi}f)(z) = f(\phi(z))$ $(z \in X)$. If C_{ϕ} is an operator defined on L^2 , C, H^2 or A then ϕ belongs to L^2 , C, H^2 or A, respectively. For we can choose z as f. It is known that C_{ϕ} is bounded on L^2 if and only if $m(\phi^{-1}(E)) \leq \gamma m(E)$ $(E \in \mathcal{B})$ where $\gamma = \gamma_{\phi}$ is possitive constant and $\gamma \geq 1$. Clearly, C_{ϕ} is bounded on C. It is well-known that C_{ϕ} is bounded on H^2 and it is easy to see that C_{ϕ} is bounded on A. Many mathematicians have been interested in composition operators. For example, see [6], [7] on L^2 , [2], [6], [8] on C(X) and [3] on H^2 . A difference of two composition operators has been studied on H^2 or A(see [1], [5], [3]).

In this paper, we study when $C_{\phi} - C_{\psi}$ is of finite rank in very general setting.

2. Case of L^2 and C

 (X, \mathcal{B}, m) denotes a finite complete Borel measure space in Theorem 1 and X

Received November 30, 2013; accepted April 11, 2014.

2010 Mathematics Subject Classification: 47B33.

Key words and phrases: composition operator, difference, Lebesgue space, Hardy space. This work was supported by Grant-in Aid Scientific Research No.20540148.

is a compact Hausdorff space in Theorem 2. $L^2 = L^2(X,m)$ is a set of square summable functions with respect to m and C = C(X) is a set of all continuous functions on X.

Lemma 1. Suppose a measurable subset E in X with m(E) > 0 and m does not have a point mass. If $C_{\phi} - C_{\psi}$ is of finite rank n on L^2 and it is zero on $\chi_E L^2$ then $C_{\phi} - C_{\psi}$ is of finite rank n on $(1 - \chi_E)L^2$.

Proof. We may assume $n \neq 0$. Hence there exist $\{f_j\}_{j=1}^n$ and $\{g_j\}_{j=1}^n$ in L^2 such that $(C_{\phi} - C_{\psi})(f) = \sum_{j=1}^{n} \langle f, f_j \rangle g_j$ where $\langle f, f_j \rangle = \int f \bar{f}_j dm \ (f \in L^2)$. Since $(C_{\phi} - C_{\psi})(\chi_E f) = \sum_{j=1}^{n} \langle \chi_E f, f_j \rangle g_j = 0 \ (f \in L^2), \ f_j = 0 \text{ on } E \text{ for any } 1 \le j \le n.$ Hence $C_{\phi} - C_{\psi}$ is of finite rank *n* on $(1 - \chi_E)L^2$.

Theorem 1. Suppose m does not have a point mass. (1) C_{ϕ} can not be of finite rank. (2) If $C_{\phi} - C_{\psi}$ is of finite rank on L^2 then $C_{\phi} = C_{\psi}$.

Proof. (1) Put $Y = \phi(X)$. Since $\chi_Y L^2 = \{f \circ \phi : f \in L^2\}$ and *m* does not have a point mass, $\chi_Y L^2 = \{0\}$ when dim $(\chi_Y L^2) < \infty$. Hence we may assume $f \circ \phi = 0$ a.e. for any $f \in L^2$. This shows the rank is zero.

(2) We may assume $m(\{z \in X : \phi(z) \neq \psi(z)\}) > 0$. Since m does not have a point mass, $\{z \in X : \phi(z) \neq \psi(z)\}$ is an uncountable set. Hence there exists a point $\zeta \in X$ such that $m(\phi^{-1}(\zeta)) = 0$ and $m(\psi^{-1}(\zeta)) = 0$. Then $m(\phi^{-1}(\zeta) \cup \psi^{-1}(\zeta)) = 0$. If $C_{\phi} - C_{\psi}$ is of finite rank $n \neq 0$ then there exist $\{f_j\}_{j=1}^n$ and $\{g_j\}_{j=1}^n$ in L^2 such that

$$(C_{\phi} - C_{\psi})(f) = \sum_{j=1}^{n} \langle f, f_j \rangle g_j \quad (f \in L^2)$$

where $\langle f, f_j \rangle = \int_X f \bar{f}_j dm$. By Lemma 1, there exists a Borel subset E_1 such that $\zeta \in E_1$ and $\langle \chi_{E_1}, f_1 \rangle \neq 0$. Again, by Lemma 1, there exists a Borel subset E_2 such that $\zeta \in E_2$ and $\langle \chi_{E_2}, f_1 \rangle \neq 0$ and $\chi_{E_1} \geq \chi_{E_2}$. Repeating this process, we get a Borel sequence subset $\{E_n\}$ such that $E_n \supseteq E_{n+1}$ and $\bigcap_n E_n = \{\zeta\}$ and

$$\langle \chi_{E_{\ell}}, f_1 \rangle \neq 0 \quad (\ell = 1, 2, \cdots)$$

Then

$$\bigcap_{n=1}^{\infty} \phi^{-1}(E_n) = \{\phi^{-1}(\zeta)\} \text{ and } \bigcap_{n=1}^{\infty} \psi^{-1}(E_n) = \{\psi^{-1}(\zeta)\}.$$

Since $(C_{\phi} - C_{\psi})(\chi_{E_{\ell}}) = \chi_{\phi^{-1}(E_{\ell})} - \chi_{\psi^{-1}(E_{\ell})},$

$$\sum_{j=1}^{n} \langle \chi_{E_{\ell}}, f_j \rangle g_j(z) = 0 \quad (z \in \phi^{-1}(E_{\ell})^c \cap \psi^{-1}(E_{\ell})^c).$$

Put $F_{\ell} = \phi^{-1}(E_{\ell})^c \cap \psi^{-1}(E_{\ell})^c$. Since $m(\phi^{-1}(\zeta) \cup \psi^{-1}(\zeta)) = 0, \ m(F_{\ell}) \to 1$ as $\ell \to \infty$. Put $a_{\ell j} = \langle \chi_{E_{\ell}}, f_j \rangle$ for $1 \leq j \leq n$ and $\ell = 1, 2, \cdots$. Then for any ℓ

$$a_{\ell 1}g_1(z) + a_{\ell 2}g_2(z) + \dots + a_{\ell n}g_n(z) = 0 \quad (z \in F_\ell)$$

and $a_{\ell 1} \neq 0$. Put $|a_{\ell k(\ell)}| = \max(|a_{\ell 1}|, \cdots, |a_{\ell n}|)$ for each ℓ . Then there exists $k_0(\ell_0)$ such that $k_0(\ell_0) = k_0(\ell)$ for infinitely many ℓ . Hence by choosing a subsequence, we may assume $|a_{\ell 1}| = 1$ and $|a_{\ell j}| \leq 1$ $(1 \leq j \leq n, 1 \leq \ell < \infty)$. Again by choosing a subsequence, we may assume $\lim_{\ell \to \infty} a_{\ell j} = a_j$ $(1 \leq j \leq n)$. Then $a_1g_1(z) + a_2g_2(z) + \cdots + a_ng_n(z) = 0$ a.e. z because $\lim_{\ell \to \infty} m(F_\ell) = 1$. Since $a_1 \neq 0$ and $\{g_j\}_{j=1}^n$ is an independent set, it is a contradiction. Therefore n = 0and $C_{\phi} = C_{\psi}$.

Theorem 2. Suppose X is a compact Hausdorff space and an infinite set. If $C_{\phi} - C_{\psi}$ is of finite rank on C(X) then $\phi = \psi$ except some finite set.

Proof. Suppose $C_{\phi} - C_{\psi}$ is of finite rank $n \neq 0$. Then there exist measures $\{\mu_j\}_{j=1}^n$ on X and functions $\{e_j\}_{j=1}^n$ in C(X) such that

$$(C_{\phi} - C_{\psi})(f) = \sum_{j=1}^{n} (\int f d\mu_j) e_j \quad (f \in C(X))$$

where $\{\mu_j\}_{j=1}^n$ is an independent set of $C(X)^*$ and $\{e_j\}_{j=1}^n$ is an independent set of C(X). Hence for any $z \in X$,

$$f(\phi(z)) - f(\psi(z)) = \sum_{j=1}^{n} \alpha_j(f)(e_j(z))$$

where $f \in C(X)$ and $\alpha_j(f) = \int f d\mu_j$ $(1 \le j \le n)$. For fixed $z \in X$, put

$$Y(z) = \{ (\alpha_1(f), \cdots, \alpha_n(f)) : f \in C(X) \text{ and } f(\phi(z)) = f(\psi(z)) \}.$$

Since $\{\mu_j\}_{j=1}^n$ is an independent set in $C(X)^*$, it is easy to see that $Y(z) = \mathbb{C}^n$ for each z except a finite set in X. In fact, if $F = \{z \in X : \phi(z) = \psi(z)\}$ then $\{\delta_{\phi(z)} - \delta_{\psi(z)}\}_{z \in X \setminus F}$ is an independent set in $C(X)^*$ where $\delta_{\phi(z)}$ and $\delta_{\psi(z)}$ are Dirac measures. When $X \setminus F$ is a finite subset, we need not to prove it. Suppose $X \setminus F$ is an infinite subset of X. For $z \in X \setminus F$, suppose $\delta_{\phi(z)} - \delta_{\psi(z)}$ is not in the linear span of $\{\mu_1, \dots, \mu_n\}$. Then, for each $1 \leq j \leq n$ there exists f_j in C(X) such that $f_j = 0$ on $\{\delta_{\phi(z)} - \delta_{\psi(z)}, \mu_1, \dots, \mu_n\} \setminus \{\mu_j\}$ and $\int f d\mu_j = 1$. This shows for $z \in X \setminus F$ $Y(z) = \mathbb{C}^n$. Hence $Y(z) = \mathbb{C}^n$ for each z except a finite set E in $X \setminus F$. Hence for $z \in X \setminus E$

$$\sum_{j=1}^{n} \alpha_j(f) \ e_j(z) = 0 \text{ and } Y(z) = \mathbb{C}^n$$

and so $e_j(z) = 0$ $(j = 1, \dots, n)$. Thus for any f in $C(X)f \circ \phi(z) \equiv f \circ \psi(z)$ $(z \in X \setminus E)$. Therefore $\phi(z) = \psi(z)$ $(z \in X \setminus E)$.

3. Case of H^2 and A

Let X be a domain \mathcal{D} in \mathbb{C} or $\partial \mathcal{D} \cup \mathcal{D}$. We assume $A(\mathcal{D})$ and $H^2(\mathcal{D})$ contain all polynomials.

Takahiko Nakazi

Lemma 2. If $C_{\phi} - C_{\psi}$ is of finite rank $n \neq 0$ on $H^2(\mathcal{D})$ then for any $\ell \geq 1$ $\phi^{\ell} - \psi^{\ell} = \sum_{j=1}^{n} \langle z^{\ell}, x_j \rangle y_j$ where $\{x_j\}_{j=1}^{n}$ and $\{y_j\}_{j=1}^{n}$ are independent sets in $H^2(\mathcal{D})$.

Proof. Since $C_{\phi} - C_{\psi}$ is of finite rank $n \neq 0$, there exist $\{x_j\}_{j=1}^n$ and $\{y_j\}_{j=1}^n$ in $H^2(\mathcal{D})$ such that $C_{\phi}f - C_{\psi}f = \sum_{j=1}^n \langle f, x_j \rangle y_j \ (f \in H^2)$. Suppose $f = z^{\ell}$.

Theorem 3. Let \mathcal{D} be a domain in \mathbb{C} and $H^2(\mathcal{D})$ a Hilbert space of holomorphic functions on \mathfrak{D} . Let $X = \mathfrak{D}$. If $C_{\phi} - C_{\psi}$ is of finite rank n on $H^2(\mathfrak{D})$ then there exists a nonzero polynomial f which is of degree $\leq n+1$, f(0) = 0 and $f \circ \phi = f \circ \psi$. *Proof.* Since $z \in H^2(\mathcal{D})$, ϕ and ψ are holomorphic on \mathcal{D} . Since C_{ϕ} and C_{ψ} are defined on $H^2(\mathcal{D}), \phi(\mathcal{D}) \subseteq \mathcal{D}$ and $\psi(\mathcal{D}) \subseteq \mathcal{D}$. Suppose $C_{\phi} - C_{\psi}$ is of finite rank n. If n = 0 then the conclusion is clear and so we may assume $n \ge 1$. Then by Lemma 2

$$\phi^i - \psi^i = \sum_{j=1}^n \langle z^i, x_j \rangle y_j = \sum_{j=1}^n a_{ij} y_j.$$

Let $\mathbf{a} = [a_{ij}]_{n \times n}$ be the matrix defined by a_{ij} $(1 \leq i \leq n, 1 \leq j \leq n)$ and $\mathbf{a}_i = (a_{i1}, \cdots, a_{in}) \ (1 \le i \le n).$ If det $\mathbf{a} = 0$ then we may assume $\mathbf{a}_1 = \sum_{j=2}^n \lambda_j \mathbf{a}_j.$ Hence $a_{1j} = \sum_{i=2}^{n} \lambda_i a_{ij} \ (1 \le j \le n)$ and so

$$\phi - \psi = \sum_{j=1}^{n} a_{1j} y_j = \sum_{j=1}^{n} (\sum_{i=2}^{n} \lambda_i a_{ij}) y_j$$
$$= \sum_{i=2}^{n} \lambda_i (\sum_{j=1}^{n} a_{ij} y_j) = \sum_{i=2}^{n} \lambda_i (\phi^i - \psi^i).$$

Therefore the polynomial $f = z - \sum_{i=2}^{n} \lambda_i z^i$ is the requested one. If det $\mathbf{a} \neq 0$ then y_j can be written as $\sum_{k=1}^{n} b_{jk}(\phi^k - \psi^k)$ where $b_{jk} \in \mathbb{C}$ and $1 \leq j \leq n$. Since $\phi^{n+1} - \psi^{n+1} = \sum_{j=1}^{n} \langle z^{n+1}, x_j \rangle y_j, f = z^{n+1} - \sum_{j=1}^{n} \sum_{k=1}^{n} \langle z^{n+1}, x_j \rangle b_{jk} z^j$ is the requested one. \Box

Corollary 1. Let ϕ and ψ be self-maps of \mathcal{D} . $C_{\phi} - C_{\psi}$ is of rank 0 if and only if $\phi \equiv \psi$. $C_{\phi} - C_{\psi}$ is of rank 1 if and only if ϕ and ψ are constants, and $\phi \not\equiv \psi$.

Proof. The first statement is clear. We will show the second statement. The if part is clear. We will show the 'only if' part. Suppose $C_{\phi} - C_{\psi} = x \otimes y$. If $\langle z, x \rangle = 0$ then $\phi \equiv \psi$. Hence we may assume $\langle z, x \rangle \neq 0$ and so $y = (\phi - \psi)/\langle z, x \rangle$. If $\langle z^2, x \rangle = 0$ then $\phi^2 - \psi^2 \equiv 0$ and so $\psi \equiv -\phi$. Since $f \circ \phi - f \circ (-\phi) = 2\phi \langle f, x \rangle/\langle z, x \rangle$, $2\phi^3 = 2\phi \langle z^3, x \rangle/\langle z, x \rangle$ and so ϕ is constant. If $\langle z^2, x \rangle \neq 0$, $\phi^2 - \psi^2 = \frac{\langle z^2, x \rangle}{\langle z, x \rangle} (\phi - \psi)$ and so $\phi + \psi \equiv a$ for some complex constant a. When $\langle z^3, x \rangle = 0$, $\phi^3 - \psi^3 \equiv 0$ and so $\phi^2 + \phi \psi + \psi^2 \equiv 0$. When $\langle z^3, x \rangle \neq 0$,

$$\phi^3 - \psi^3 = \frac{\langle z^3, x \rangle}{\langle z, x \rangle} (\phi - \psi)$$

128

and so $\phi^2 + \phi \psi + \psi^2 \equiv b$ for some complex constant *b*. Hence when $\langle z^2, x \rangle \neq 0$ then $\phi + \psi \equiv a$ and $\phi^2 + \phi \psi + \psi^2 \equiv b$. Therefore $\phi^2 - a\phi + a^2 - b = 0$. This shows ϕ and ψ are constant.

When \mathcal{D} is the open unit disc, an inner function q in $H^2(\mathcal{D})$ means a unimodular function in $\partial \mathcal{D}$ and sing q denotes the subset of $\partial \mathcal{D}$ on which q can not be analytically extended.

Corollary 2. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi} - C_{\psi}$ is of finite rank. If ϕ and ψ are inner then sing $\phi = sing \psi$.

Corollary 3. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi} - C_{\psi}$ is of finite rank n. When ϕ and ψ are inner, if ϕ is a finite Blaschke product of degree n then $\phi \equiv \psi$.

Proof. Let f be a polynomial in Theorem 3. By Corollary 2, ψ is also a finite Blaschke product. If ϕ has a pole at z_0 with multiplicity ℓ then so does ψ . This shows $\phi \equiv \alpha \psi$ for some constant α .

Corollary 4. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi} - C_{\psi}$ is of finite rank n. When ϕ and ψ be inner, if ϕ is a Blaschke product then $\psi = \phi s$ and s is a singular inner with sing $s \subseteq sing \phi$.

Proof. Since f is a polynomial with f(0) = 0, if ϕ has a pole at z_0 with multiplicity ℓ then so does the Blaschke part of ψ . This and Corollary 2 show the corollary. \Box

Theorem 4. Let \mathcal{D} be a domain in \mathbb{C} and $H^2(\mathcal{D})$ a Hilbert space of holomorphic functions on \mathcal{D} . Suppose $H^2(\mathcal{D})$ contains all polynomials. Let $X = \mathcal{D}$. If $C_{\phi} - C_{\psi}$ is of finite rank $n \neq 0$ on $H^2(\mathcal{D})$ then for any enough large ℓ

$$\phi^{\ell} - \psi^{\ell} = \sum_{j=1}^{n} b_{\ell j} (\phi^{S_0(j)} - \psi^{S_0(j)})$$

where $\{S_0(j)\}_{j=1}^n$ is a fixed subset of natural numbers.

Proof. For $t \geq 1$, put $a_{tj} = \langle z^t, x_j \rangle$ $(1 \leq j \leq n)$. Then by Lemma 2 $\phi^t - \psi^t = \sum_{j=1}^n a_{tj}y_j$. When $S = \{S(i)\}_{i=1}^n$ is a subset of natural numbers and $S(i) \leq S(i+1)$, we write $\mathbf{a}_S = [a_{S(i)j}]_{n \times n}$. Put $r = \max_S r(\mathbf{a}_S)$ where $r(\mathbf{a}_S)$ denotes the rank of \mathbf{a}_S and $r = r(\mathbf{a}_{S_0})$. If $\ell > S_0(n)$, then there exist $b_{1\ell}, \cdots, b_{n\ell}$ in \mathbb{C} such that

$$\phi^{\ell} - \psi^{\ell} = \sum_{j=1}^{n} b_{\ell j} (\phi^{S_0(j)} - \psi^{S_0(j)}).$$

Theorem 5. Let \mathcal{D} be a bounded domain in \mathbb{C} and $A(\mathcal{D})$ a set of holomorphic functions on \mathcal{D} which are continuous on $\mathcal{D} \cup \partial \mathcal{D}$. Let $X = \mathcal{D} \cup \partial \mathcal{D}$. If $C_{\phi} - C_{\psi}$ is of finite rank n on $A(\mathcal{D})$ then there exists a polynomial f which is of degree $\leq n$ and $f \circ \phi = f \circ \psi$.

Proof. Since $z \in A(\mathcal{D})$, ϕ and ψ belong to $A(\mathcal{D})$, $\phi(\mathcal{D}) \subseteq \mathcal{D}$ and $\psi(\mathcal{D}) \subseteq \mathcal{D}$. Suppose $C_{\phi} - C_{\psi}$ is of finite rank n. If n = 0 then the conclusion is clear and so we may assume $n \geq 1$. Then there exist $\{\mu_j\}_{j=1}^n$ in $C(X)^*$ and $\{y_j\}_{j=1}^n$ in $A(\mathcal{D})$ such that

Takahiko Nakazi

$$(C_{\phi} - C_{\psi})(g) = \sum_{j=1}^{n} \left(\int_{X} g d\mu_j \right) y_j \quad (g \in A(\mathcal{D}))$$

where $\{\mu_j + A(\mathcal{D})^{\perp} \cap C(X)^*\}_{j=1}^n$ is independent in $C(X)^*/A(\mathcal{D})$. Now we can prove as in the proof of Theorem 3.

Corollary 5. Let ϕ and ψ be self-maps of \mathcal{D} . $C_{\phi} - C_{\psi}$ is of rank 0 if and only if $\phi \equiv \psi$. $C_{\phi} - C_{\psi}$ is of rank 1 if and only if ϕ and ψ are constants, and $\phi \neq \psi$.

Proof. The proof is similar to that of Corollary 1.

Corollary 6. Let \mathcal{D} be an open unit disc. Suppose $C_{\phi} - C_{\psi}$ is of finite rank. If ϕ and ψ are inner then ϕ and ψ are Blaschke products and $\phi \equiv \alpha \psi$ for some some constant α .

Proof. Since ϕ and ψ belong to $A(\mathcal{D})$, both ϕ and ψ are finite Blaschke products. By Theorem 5 $\psi \equiv \alpha \psi$ for some constant α .

Theorem 6. Let \mathcal{D} be a bounded domain in \mathbb{C} and $A(\mathcal{D})$ a set of holomorphic functions on \mathcal{D} which are continuous on $\mathcal{D} \cup \partial \mathcal{D}$. Let $X = \mathcal{D} \cup \partial \mathcal{D}$. If $C_{\phi} - C_{\psi}$ is of finite rank n on $A(\mathcal{D})$ then for any enough large ℓ

$$\phi^{\ell} - \psi^{\ell} = \sum_{j=1}^{n} b_{\ell j} (\phi^{S_0(j)} - \psi^{S_0(j)})$$

where $\{S_0(j)\}_{j=1}^n$ is a fixed subset of natural number. Proof. The proofs of Theorem 4 and 5 show the theorem.

References

- E. Berkson, Composition operators isolated in the uniform operator topology, Proc. Amer. Math. Soc., 81(1981), 230–232.
- [2] H. Kamowitz, Compact weighted endomorphisms of C(X), Proc. Amer. Math. Soc., **83**(1981), 517–521.
- [3] B. D. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on H[∞], Integr. Eq. Op. Th., 40(2001), 481–494.
- [4] E. A. Nordgren, Composition operators on Hilbert spaces, Hilbert Space Operators, Lecture Notes in Math., 693, Springer-Verlag, Berlin, Heidelberg, and New York, (1978), 37–63.
- J. H. Shapino and C. Sundberg, Isolation amongst the composition operators, Pacific. J. Math., 145(1990), 117–152.
- [6] R. K. Singh and R. D. C. Kumar, Compact weighted composition operators on $L^2(\lambda)$, Acta Sci. Math., **49**(1985), 339–344.
- [7] H. Takagi, Compact weighted composition operators on L^p, Proc. Amer. Math. Soc., 116(1992), 505–511.
- [8] H. Takagi, Fredholm weighted composition operators, Integr. Equat. Oper. Th., 16(1993), 267–276.

130