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ABSTRACT. A finite rank difference of two composition operators is studied on a Hilbert
Lebesgue space or a Hilbert Hardy space.

1. Introduction

Let (X,B,m) be a finite complete Borel measure space and let ¢ : X — X
be a measurable transformation, that is, $~1(E) € B for any E € B. As a typical
example of (X, B, m), (1) X is a unit circle D or a closed unit disc 0DUD, (2) B is
a Borel o-algebra, (3) m is a normalized Lebesgue measure on 0D or a normalized
area measure on 0D U D.

L? = L?(0D) denotes the usual Lebesgue space and H? = H?(D) denotes the
usual Hardy space. Let C' = C(9D) be the set of all continuous functions on 9D
and A = A(D) the disc algebra on D.

For a measurable function f on X, (Cyf)(2) = f(¢(2)) (2 € X). If Cyp is an
operator defined on L2, C, H? or A then ¢ belongs to L2, C, H? or A, respectively.
For we can choose z as f. It is known that C, is bounded on L? if and only
if m(¢p~'(E)) < ym(FE) (E € B) where v = 7,4 is possitive constant andy > 1.
Clearly, Cy is bounded on C. It is well-known that Cy is bounded on H? and it is
easy to see that Cy4 is bounded on A. Many mathematicians have been interested
in composition operators. For example, see [6], [7] on L?, [2], [6], [8] on C(X) and
[3] on H2. A difference of two composition operators has been studied on H? or A
(see [1], [5], [3]).

In this paper, we study when Cy — Cy is of finite rank in very general setting.

2. Case of L? and C

(X, B, m) denotes a finite complete Borel measure space in Theorem 1 and X
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is a compact Hausdorff space in Theorem 2. L? = L?(X,m) is a set of square
summable functions with respect to m and C' = C(X) is a set of all continuous
functions on X.

Lemma 1. Suppose a measurable subset E in X with m(E) > 0 and m does not
have a point mass. If Cy — Cy is of finite rank n on L? and it is zero on xpL? then
Cy — Cy is of finite rank n on (1 — xg)L%

Proof. We may assume n # 0. Hence there exist {f; 71 and {9; 74 in L? such
that (Cy — Cy)(f) = X251 ([, fi)g; where (f, f;) = /ffjdm (f € L?). Since

(Cop = Cy)xuf) =21 (xef, f)g; =0 (f € L?), f; =0 on E for any 1 < j < n.
Hence C, — Cy is of finite rank n on (1 — xg) L% o

Theorem 1. Suppose m does not have a point mass. (1) Cy can not be of finite
rank. (2) If Cy — Cy is of finite rank on L? then Cy = Cy.

Proof. (1) Put Y = ¢(X). Since xyL? = {fo ¢ : f € L?} and m does not have a
point mass, xy L? = {0} when dim(xy L?) < co. Hence we may assume f o ¢ = 0
a.e. for any f € L2. This shows the rank is zero.

(2) We may assume m({z € X : ¢(z) # ¢¥(2)}) > 0. Since m does not have a
point mass, {z € X : ¢(2) # ¥(2)} is an uncountable set. Hence there exists a point
¢ € X such that m(¢=1(¢)) = 0 and m(¢=(¢)) = 0. Then m(¢~1(()Uy~1(¢)) = 0.
If Cy — Cy is of finite rank n # 0 then there exist {f;}/_; and {g;}}_, in L* such
that

n

(Co = Co)(f) =D _(f figs (feL?

j=1

where (f, f;) = fX ffjdm. By Lemma 1, there exists a Borel subset E; such that
¢ € By and (xg,, f1) # 0. Again, by Lemma 1, there exists a Borel subset F5 such
that ¢ € Ey and (xE,, f1) # 0 and xg, Z XE,- Repeating this process, we get a
Borel sequence subset {E,,} such that E, 2 Ey,41 and (), E, = {C} and

<XEgaf1>7é0 (6:1723)
Then -
ﬂ ¢)} and ﬂw w) = {071

n=1

Smce(%*%)( ) = Xo-1(By) — Xo—1(Eo)»

> (xE £)9i(2) =0 (2 € 67 (Eo)° N~ (Er)).

Jj=1

Put Fy = ¢ 1(Ey)° N1 (Ep)c. Since m(¢~ () Uv1(¢)) = 0, m(F,) — 1 as
¢ — oo. Put agj = (xg,, fj) for 1 <j<mand £=1,2,---. Then for any ¢

ang1(2) + arg2(2) + -+ amgn(z) =0 (2 € Fy)
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and ag; # 0. Put |agye)| = max(|ael, -, |awm]|) for each £. Then there exists ko (o)
such that ko(fo) = ko(£) for infinitely many ¢. Hence by choosing a subsequence,
we may assume |api| = 1 and Jag| <1 (1 < j < n,1 </{ < o0). Again by
choosing a subsequence, we may assume limy ..o ap; = a; (1 < j < n). Then
a191(z) + a2g2(2) + -+ + angn(z) = 0 a.e.z because limy_,o, m(Fy) = 1. Since
a; # 0 and {g; 7—1 is an independent set, it is a contradiction. Therefore n = 0
and Cy = Cy. m|

Theorem 2. Suppose X is a compact Hausdorff space and an infinite set. If
Cy — Cy is of finite rank on C(X) then ¢ = 1) except some finite set.

Proof. Suppose Cy — Cy, is of finite rank n # 0. Then there exist measures {y; };L:l
on X and functions {e;}_; in C(X) such that

(Co=C)f) =3[ fdw)e; (f < Cx))

where {;}7_; is an independent set of C'(X)* and {e;}7_; is an independent set
of C(X). Hence for any z € X,

F(0(2) = FW(2)) = ) a;(f)(ej(2)
j=1

where f € C(X) and o;(f) = [ fdu; (1 <j <n). For fixed z € X, put

Y(z) ={(aa(f), - an(f)) : f € C(X) and f(¢(2)) = f(¥(2))}-

Since {u;}j_; is an independent set in C(X)*, it is easy to see that Y(z) = C"
for each z except a finite set in X. In fact, if F' = {z € X : ¢(2) = ¢(2)} then
{04(2) =0y (2) }zex\F is an independent set in C(X)* where d4(.) and .y are Dirac
measures. When X\F is a finite subset, we need not to prove it. Suppose X\F
is an infinite subset of X. For z € X\ F, suppose 0g4(.) — 0y(z) is not in the linear
span of {p1,--- , pn}. Then, for each 1 < j < n there exists f; in C'(X) such that
fi =00n{s0:) —0pz)> 15+ s i }\{t;} and [ fdp; = 1. This shows for z € X\F
Y (z) = C™. Hence Y (z) = C™ for each z except a finite set F in X\F. Hence for
z e X\E

Zaj(f) ej(z) =0and Y(z) =C"
j=1

and so ej(2) =0 (j=1,---,n). Thus for any f in C(X)fo¢(z) = fo(z) (2 €
X\E). Therefore ¢(z) = ¢(z) (2 € X\E).
3. Case of H? and A

Let X be a domain D in C or 9D UD. We assume A(D) and H?(D) contain
all polynomials.
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Lemma 2. If Cy — Cy, is of finite rank n # 0 on H*(D) then for any £ > 1
Pt—yt = Py V(2 x5)y; where {x;}7_) and {y;}7—, are independent sets in H*(D).

Proof. Since Cy — Cy is of finite rank n # 0, there exist {z;}7_, and {y]} _, in
H?(D) such that Cyf — Cy f = ijl<f, z;)y; (f € H?). Suppose f = 2* O

Theorem 3. Let D be a domain in C and H*(D) a Hilbert space of holomorphic
functions on D. Let X = D. If Cy — Cy is of finite rank n on H*(D) then there
exists a nonzero polynomial [ which is of degree < n+1, f(0) =0 and fop = for).
Proof. Since z € H?(D), ¢ and v are holomorphic on D. Since Cp and Cy are
defined on H?(D), ¢(D) C D and (D) C D. Suppose Cy — Cy, is of finite rank n.
If n = 0 then the conclusion is clear and so we may assume n > 1. Then by Lemma

2
n
Qsz*d)z:z 2" I] Y = Zaljy]
j=1
Let a = [aij]lnxn be the matrix defined by a;; (1 < ¢ < n, 1 < j < n) and
a; = (a1, ,ain) (1 <i<n). If det a =0 then we may assume a; = Z?:z Aja;.

Hence a1; = > 5 Niaij (1 < j <n) and so

o=

Il Il
HM: HM:
()

2

<.

i

- I

= IX

s Il

—
HM:

M= x

S

> S

Therefore the polynomial f =z — Y7 , \;2" is the requested one.

If det a # 0 then y; can be written as > ,_, bjr(¢* — 1*) where bj, €
C and 1 < j < n. Since ¢"tt — Yt = Y L ag)y fo= 2~
> e e (27 1 2;)bjrz? is the requested one. O

Corollary 1. Let ¢ and v be self-maps of D. Cy — Cy is of rank 0 if and only if
P =1. Cp — Cy s of rank 1 if and only if ¢ and ¢ are constants, and ¢ # 1.
Proof. The first statement is clear. We will show the second statement. The
‘if” part is clear. We will show the ‘only if’ part. Suppose Cy — Cy =z @ y. If
(z,2) = 0 then ¢ = ¢). Hence we may assume (z,z) # 0and soy = (¢—v)/(z,x). If
(2%, x) = 0 then ¢? —1)? = 0 and so 1) = —¢. Since fop— fo(—¢p) = 2¢(f, )/( x),
2¢3 = 2¢(2%,x) /(2,z) and so ¢ is constant. If (22, z) #£ 0, ¢? — ¢ = <<Z x>> (p—1)

Z,x
and so ¢ + 1 = a for some complex constant a. When (23, z) = 0, ¢ — 1/J3 =0 and
s0 ¢? + ¢ + 2 = 0. When (23, 2) # 0,

(2%, 7)
(z,2)

¢* — 4 = (¢ —7)
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and so ¢? + ¢ + 1% = b for some complex constant b. Hence when (22, ) # 0 then
¢+ =a and ¢? + ¢ + 2 = b. Therefore ¢ — a¢ + a? — b = 0. This shows ¢
and 1 are constant. m]

When D is the open unit disc, an inner function ¢ in H?(D) means a unimod-
ular function in 9D and sing ¢ denotes the subset of 9D on which ¢ can not be
analytically extended.

Corollary 2. Let D be the open unit disc. Suppose Cy — Cy is of finite rank. If ¢
and 1 are inner then sing ¢ = sing 1.

Corollary 3. Let D be the open unit disc. Suppose Cy — Cy is of finite rank n.
When ¢ and v are inner, if ¢ is a finite Blaschke product of degree n then ¢ = 1.

Proof. Let f be a polynomial in Theorem 3. By Corollary 2, 1 is also a finite
Blaschke product. If ¢ has a pole at zg with multiplicity ¢ then so does 1. This
shows ¢ = a1 for some constant «.

Corollary 4. Let D be the open unit disc. Suppose Cy — Cy is of finite rank n.
When ¢ and i be inner, if ¢ is a Blaschke product then ¢ = ¢s and s is a singular
mner with sing s C sing ¢.

Proof. Since f is a polynomial with f(0) = 0, if ¢ has a pole at zp with multiplicity
¢ then so does the Blaschke part of ¢). This and Corollary 2 show the corollary. O

Theorem 4. Let D be a domain in C and H?*(D) a Hilbert space of holomorphic
functions on D. Suppose H*(D) contains all polynomials. Let X = D. If Cy — Cy,
is of finite rank n # 0 on H?(D) then for any enough large ¢

¢e . ZZJZ _ Z?:l sz(qsso(j) _ q/,So(j))

where {So(j)}—; is a fived subset of natural numbers.

Proof. For t > 1, put a;; = (z%,z;) (1 < j < mn). Then by Lemma 2 ¢’ — ¢t =
> i—1 atjy;. When S = {S(i)}[_; is a subset of natural numbers and S(i) < S(i+1),

we write ag = [ag(j)jlnxn- Put r = maxgr(ag) where r(as) denotes the rank of a,
and r = r(ag,). If £ > Sy(n), then there exist byg, - -, bye in C such that

¢t =yt = Zb€j<¢so(j)—1/}50(j))- O
j=1

Theorem 5. Let D be a bounded domain in C and A(D) a set of holomorphic
functions on D which are continuous on DU ID. Let X = DUID. If Cy — Cy
is of finite rank n on A(D) then there exists a polynomial f which is of degree <n
and fo¢ = fou.
Proof. Since z € A(D), ¢ and 9 belong to A(D), ¢(D) C D and (D) C D.
Suppose Cy — Cy, is of finite rank n. If n = 0 then the conclusion is clear and so we
may assume n > 1. Then there exist {z;}7_; in C(X)* and {y;}7_; in A(D) such
that
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(Co=Co)la) = Siea | o)y (5°€ AD))
where {u;+A(D)tNC(X)* 1 is independent in C(X)*/A(D). Now we can prove
as in the proof of Theorem 3. O

Corollary 5. Let ¢ and ¢ be self-maps of D. Cy — Cy is of rank 0 if and only if
¢p=1. Cyp — Cy is of rank 1 if and only if ¢ and 3 are constants, and ¢ # 1.

Proof. The proof is similar to that of Corollary 1. O

Corollary 6. Let D be an open unit disc. Suppose Cy — Cy, is of finite rank. If ¢
and ¥ are inner then ¢ and v are Blaschke products and ¢ = o for some some
constant .

Proof. Since ¢ and 1 belong to A(D), both ¢ and v are finite Blaschke products.
By Theorem 5 1 = a) for some constant «. O

Theorem 6. Let D be a bounded domain in C and A(D) a set of holomorphic
functions on D which are continuous on DUID. Let X =DUID. If Cyp — Cy is
of finite rank n on A(D) then for any enough large ¢

¢t — ot = 2?21 by (¢500) — 4pSo(0))
where {So(j)}7—, is a fived subset of natural number.
Proof. The proofs of Theorem 4 and 5 show the theorem. O
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