A Difference of Two Composition Operators on L^{2} and H^{2}

Takahiko Nakazi
Professor Emeritus Hokkaido University Sapporo 060-0810, Japan
e-mail: tnakazi70@gmail.com

Abstract. A finite rank difference of two composition operators is studied on a Hilbert Lebesgue space or a Hilbert Hardy space.

1. Introduction

Let (X, \mathcal{B}, m) be a finite complete Borel measure space and let $\phi: X \rightarrow X$ be a measurable transformation, that is, $\phi^{-1}(E) \in \mathcal{B}$ for any $E \in \mathcal{B}$. As a typical example of $(X, \mathcal{B}, m),(1) X$ is a unit circle ∂D or a closed unit disc $\partial D \cup D,(2) \mathcal{B}$ is a Borel σ-algebra, (3) m is a normalized Lebesgue measure on ∂D or a normalized area measure on $\partial D \cup D$.
$L^{2}=L^{2}(\partial D)$ denotes the usual Lebesgue space and $H^{2}=H^{2}(D)$ denotes the usual Hardy space. Let $C=C(\partial D)$ be the set of all continuous functions on ∂D and $A=A(D)$ the disc algebra on \bar{D}.

For a measurable function f on $X,\left(C_{\phi} f\right)(z)=f(\phi(z))(z \in X)$. If C_{ϕ} is an operator defined on L^{2}, C, H^{2} or A then ϕ belongs to L^{2}, C, H^{2} or A, respectively. For we can choose z as f. It is known that C_{ϕ} is bounded on L^{2} if and only if $m\left(\phi^{-1}(E)\right) \leq \gamma m(E)(E \in \mathcal{B})$ where $\gamma=\gamma_{\phi}$ is possitive constant and $\gamma \geq 1$. Clearly, C_{ϕ} is bounded on C. It is well-known that C_{ϕ} is bounded on H^{2} and it is easy to see that C_{ϕ} is bounded on A. Many mathematicians have been interested in composition operators. For example, see [6], [7] on $L^{2},[2],[6],[8]$ on $C(X)$ and [3] on H^{2}. A difference of two composition operators has been studied on H^{2} or A (see [1], [5], [3]).

In this paper, we study when $C_{\phi}-C_{\psi}$ is of finite rank in very general setting.

2. Case of L^{2} and C

(X, \mathcal{B}, m) denotes a finite complete Borel measure space in Theorem 1 and X

Received November 30, 2013; accepted April 11, 2014.
2010 Mathematics Subject Classification: 47B33.
Key words and phrases: composition operator, difference, Lebesgue space, Hardy space. This work was supported by Grant-in Aid Scientific Research No. 20540148.
is a compact Hausdorff space in Theorem 2. $L^{2}=L^{2}(X, m)$ is a set of square summable functions with respect to m and $C=C(X)$ is a set of all continuous functions on X.
Lemma 1. Suppose a measurable subset E in X with $m(E)>0$ and m does not have a point mass. If $C_{\phi}-C_{\psi}$ is of finite rank n on L^{2} and it is zero on $\chi_{E} L^{2}$ then $C_{\phi}-C_{\psi}$ is of finite rank n on $\left(1-\chi_{E}\right) L^{2}$.
Proof. We may assume $n \neq 0$. Hence there exist $\left\{f_{j}\right\}_{j=1}^{n}$ and $\left\{g_{j}\right\}_{j=1}^{n}$ in L^{2} such that $\left(C_{\phi}-C_{\psi}\right)(f)=\sum_{j=1}^{n}\left\langle f, f_{j}\right\rangle g_{j}$ where $\left\langle f, f_{j}\right\rangle=\int f \bar{f}_{j} d m\left(f \in L^{2}\right)$. Since $\left(C_{\phi}-C_{\psi}\right)\left(\chi_{E} f\right)=\sum_{j=1}^{n}\left\langle\chi_{E} f, f_{j}\right\rangle g_{j}=0\left(f \in L^{2}\right), f_{j}=0$ on E for any $1 \leq j \leq n$. Hence $C_{\phi}-C_{\psi}$ is of finite rank n on $\left(1-\chi_{E}\right) L^{2}$.
Theorem 1. Suppose m does not have a point mass. (1) C_{ϕ} can not be of finite rank. (2) If $C_{\phi}-C_{\psi}$ is of finite rank on L^{2} then $C_{\phi}=C_{\psi}$.
Proof. (1) Put $Y=\phi(X)$. Since $\chi_{Y} L^{2}=\left\{f \circ \phi: f \in L^{2}\right\}$ and m does not have a point mass, $\chi_{Y} L^{2}=\{0\}$ when $\operatorname{dim}\left(\chi_{Y} L^{2}\right)<\infty$. Hence we may assume $f \circ \phi=0$ a.e. for any $f \in L^{2}$. This shows the rank is zero.
(2) We may assume $m(\{z \in X: \phi(z) \neq \psi(z)\})>0$. Since m does not have a point mass, $\{z \in X: \phi(z) \neq \psi(z)\}$ is an uncountable set. Hence there exists a point $\zeta \in X$ such that $m\left(\phi^{-1}(\zeta)\right)=0$ and $m\left(\psi^{-1}(\zeta)\right)=0$. Then $m\left(\phi^{-1}(\zeta) \cup \psi^{-1}(\zeta)\right)=0$. If $C_{\phi}-C_{\psi}$ is of finite rank $n \neq 0$ then there exist $\left\{f_{j}\right\}_{j=1}^{n}$ and $\left\{g_{j}\right\}_{j=1}^{n}$ in L^{2} such that

$$
\left(C_{\phi}-C_{\psi}\right)(f)=\sum_{j=1}^{n}\left\langle f, f_{j}\right\rangle g_{j} \quad\left(f \in L^{2}\right)
$$

where $\left\langle f, f_{j}\right\rangle=\int_{X} f \bar{f}_{j} d m$. By Lemma 1 , there exists a Borel subset E_{1} such that $\zeta \in E_{1}$ and $\left\langle\chi_{E_{1}}, f_{1}\right\rangle \neq 0$. Again, by Lemma 1, there exists a Borel subset E_{2} such that $\zeta \in E_{2}$ and $\left\langle\chi_{E_{2}}, f_{1}\right\rangle \neq 0$ and $\chi_{E_{1}} \ngtr \chi_{E_{2}}$. Repeating this process, we get a Borel sequence subset $\left\{E_{n}\right\}$ such that $E_{n} \supsetneq E_{n+1}$ and $\bigcap_{n} E_{n}=\{\zeta\}$ and

$$
\left\langle\chi_{E_{\ell}}, f_{1}\right\rangle \neq 0 \quad(\ell=1,2, \cdots)
$$

Then

$$
\bigcap_{n=1}^{\infty} \phi^{-1}\left(E_{n}\right)=\left\{\phi^{-1}(\zeta)\right\} \text { and } \bigcap_{n=1}^{\infty} \psi^{-1}\left(E_{n}\right)=\left\{\psi^{-1}(\zeta)\right\}
$$

Since $\left(C_{\phi}-C_{\psi}\right)\left(\chi_{E_{\ell}}\right)=\chi_{\phi^{-1}\left(E_{\ell}\right)}-\chi_{\psi^{-1}\left(E_{\ell}\right)}$,

$$
\sum_{j=1}^{n}\left\langle\chi_{E_{\ell}}, f_{j}\right\rangle g_{j}(z)=0 \quad\left(z \in \phi^{-1}\left(E_{\ell}\right)^{c} \cap \psi^{-1}\left(E_{\ell}\right)^{c}\right)
$$

Put $F_{\ell}=\phi^{-1}\left(E_{\ell}\right)^{c} \cap \psi^{-1}\left(E_{\ell}\right)^{c}$. Since $m\left(\phi^{-1}(\zeta) \cup \psi^{-1}(\zeta)\right)=0, m\left(F_{\ell}\right) \rightarrow 1$ as $\ell \rightarrow \infty$. Put $a_{\ell j}=\left\langle\chi_{E_{\ell}}, f_{j}\right\rangle$ for $1 \leq j \leq n$ and $\ell=1,2, \cdots$. Then for any ℓ

$$
a_{\ell 1} g_{1}(z)+a_{\ell 2} g_{2}(z)+\cdots+a_{\ell n} g_{n}(z)=0 \quad\left(z \in F_{\ell}\right)
$$

and $a_{\ell 1} \neq 0$. Put $\left|a_{\ell k(\ell)}\right|=\max \left(\left|a_{\ell 1}\right|, \cdots,\left|a_{\ell n}\right|\right)$ for each ℓ. Then there exists $k_{0}\left(\ell_{0}\right)$ such that $k_{0}\left(\ell_{0}\right)=k_{0}(\ell)$ for infinitely many ℓ. Hence by choosing a subsequence, we may assume $\left|a_{\ell 1}\right|=1$ and $\left|a_{\ell j}\right| \leq 1(1 \leq j \leq n, 1 \leq \ell<\infty)$. Again by choosing a subsequence, we may assume $\lim _{\ell \rightarrow \infty} a_{\ell j}=a_{j}(1 \leq j \leq n)$. Then $a_{1} g_{1}(z)+a_{2} g_{2}(z)+\cdots+a_{n} g_{n}(z)=0$ a.e. z because $\lim _{\ell \rightarrow \infty} m\left(F_{\ell}\right)=1$. Since $a_{1} \neq 0$ and $\left\{g_{j}\right\}_{j=1}^{n}$ is an independent set, it is a contradiction. Therefore $n=0$ and $C_{\phi}=C_{\psi}$.

Theorem 2. Suppose X is a compact Hausdorff space and an infinite set. If $C_{\phi}-C_{\psi}$ is of finite rank on $C(X)$ then $\phi=\psi$ except some finite set.
Proof. Suppose $C_{\phi}-C_{\psi}$ is of finite rank $n \neq 0$. Then there exist measures $\left\{\mu_{j}\right\}_{j=1}^{n}$ on X and functions $\left\{e_{j}\right\}_{j=1}^{n}$ in $C(X)$ such that

$$
\left(C_{\phi}-C_{\psi}\right)(f)=\sum_{j=1}^{n}\left(\int f d \mu_{j}\right) e_{j} \quad(f \in C(X))
$$

where $\left\{\mu_{j}\right\}_{j=1}^{n}$ is an independent set of $C(X)^{*}$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is an independent set of $C(X)$. Hence for any $z \in X$,

$$
f(\phi(z))-f(\psi(z))=\sum_{j=1}^{n} \alpha_{j}(f)\left(e_{j}(z)\right)
$$

where $f \in C(X)$ and $\alpha_{j}(f)=\int f d \mu_{j}(1 \leq j \leq n)$. For fixed $z \in X$, put

$$
Y(z)=\left\{\left(\alpha_{1}(f), \cdots, \alpha_{n}(f)\right): f \in C(X) \text { and } f(\phi(z))=f(\psi(z))\right\} .
$$

Since $\left\{\mu_{j}\right\}_{j=1}^{n}$ is an independent set in $C(X)^{*}$, it is easy to see that $Y(z)=\mathbb{C}^{n}$ for each z except a finite set in X. In fact, if $F=\{z \in X: \phi(z)=\psi(z)\}$ then $\left\{\delta_{\phi(z)}-\delta_{\psi(z)}\right\}_{z \in X \backslash F}$ is an independent set in $C(X)^{*}$ where $\delta_{\phi(z)}$ and $\delta_{\psi(z)}$ are Dirac measures. When $X \backslash F$ is a finite subset, we need not to prove it. Suppose $X \backslash F$ is an infinite subset of X. For $z \in X \backslash F$, suppose $\delta_{\phi(z)}-\delta_{\psi(z)}$ is not in the linear span of $\left\{\mu_{1}, \cdots, \mu_{n}\right\}$. Then, for each $1 \leq j \leq n$ there exists f_{j} in $C(X)$ such that $f_{j}=0$ on $\left\{\delta_{\phi(z)}-\delta_{\psi(z)}, \mu_{1}, \cdots, \mu_{n}\right\} \backslash\left\{\mu_{j}\right\}$ and $\int f d \mu_{j}=1$. This shows for $z \in X \backslash F$ $Y(z)=\mathbb{C}^{n}$. Hence $Y(z)=\mathbb{C}^{n}$ for each z except a finite set E in $X \backslash F$. Hence for $z \in X \backslash E$

$$
\sum_{j=1}^{n} \alpha_{j}(f) e_{j}(z)=0 \text { and } Y(z)=\mathbb{C}^{n}
$$

and so $e_{j}(z)=0 \quad(j=1, \cdots, n)$. Thus for any f in $C(X) f \circ \phi(z) \equiv f \circ \psi(z)(z \in$ $X \backslash E)$. Therefore $\phi(z)=\psi(z)(z \in X \backslash E)$.

3. Case of H^{2} and A

Let X be a domain \mathcal{D} in \mathbb{C} or $\partial \mathcal{D} \cup \mathcal{D}$. We assume $A(\mathcal{D})$ and $H^{2}(\mathcal{D})$ contain all polynomials.

Lemma 2. If $C_{\phi}-C_{\psi}$ is of finite rank $n \neq 0$ on $H^{2}(\mathcal{D})$ then for any $\ell \geq 1$ $\phi^{\ell}-\psi^{\ell}=\sum_{j=1}^{n}\left\langle z^{\ell}, x_{j}\right\rangle y_{j}$ where $\left\{x_{j}\right\}_{j=1}^{n}$ and $\left\{y_{j}\right\}_{j=1}^{n}$ are independent sets in $H^{2}(\mathcal{D})$.
Proof. Since $C_{\phi}-C_{\psi}$ is of finite rank $n \neq 0$, there exist $\left\{x_{j}\right\}_{j=1}^{n}$ and $\left\{y_{j}\right\}_{j=1}^{n}$ in $H^{2}(\mathcal{D})$ such that $C_{\phi} f-C_{\psi} f=\sum_{j=1}^{n}\left\langle f, x_{j}\right\rangle y_{j}\left(f \in H^{2}\right)$. Suppose $f=z^{\ell}$.

Theorem 3. Let \mathcal{D} be a domain in \mathbb{C} and $H^{2}(\mathcal{D})$ a Hilbert space of holomorphic functions on \mathcal{D}. Let $X=\mathcal{D}$. If $C_{\phi}-C_{\psi}$ is of finite rank n on $H^{2}(\mathcal{D})$ then there exists a nonzero polynomial f which is of degree $\leq n+1, f(0)=0$ and $f \circ \phi=f \circ \psi$.
Proof. Since $z \in H^{2}(\mathcal{D}), \phi$ and ψ are holomorphic on \mathcal{D}. Since C_{ϕ} and C_{ψ} are defined on $H^{2}(\mathcal{D}), \phi(\mathcal{D}) \subseteq \mathcal{D}$ and $\psi(\mathcal{D}) \subseteq \mathcal{D}$. Suppose $C_{\phi}-C_{\psi}$ is of finite rank n. If $n=0$ then the conclusion is clear and so we may assume $n \geq 1$. Then by Lemma 2

$$
\phi^{i}-\psi^{i}=\sum_{j=1}^{n}\left\langle z^{i}, x_{j}\right\rangle y_{j}=\sum_{j=1}^{n} a_{i j} y_{j}
$$

Let $\mathbf{a}=\left[a_{i j}\right]_{n \times n}$ be the matrix defined by $a_{i j}(1 \leq i \leq n, 1 \leq j \leq n)$ and $\mathbf{a}_{i}=\left(a_{i 1}, \cdots, a_{i n}\right)(1 \leq i \leq n)$. If det $\mathbf{a}=0$ then we may assume $\mathbf{a}_{1}=\sum_{j=2}^{n} \lambda_{j} \mathbf{a}_{j}$. Hence $a_{1 j}=\sum_{i=2}^{n} \lambda_{i} a_{i j}(1 \leq j \leq n)$ and so

$$
\begin{aligned}
\phi-\psi & =\sum_{j=1}^{n} a_{1 j} y_{j}=\sum_{j=1}^{n}\left(\sum_{i=2}^{n} \lambda_{i} a_{i j}\right) y_{j} \\
& =\sum_{i=2}^{n} \lambda_{i}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right)=\sum_{i=2}^{n} \lambda_{i}\left(\phi^{i}-\psi^{i}\right) .
\end{aligned}
$$

Therefore the polynomial $f=z-\sum_{i=2}^{n} \lambda_{i} z^{i}$ is the requested one.
If det $\mathbf{a} \neq 0$ then y_{j} can be written as $\sum_{k=1}^{n} b_{j k}\left(\phi^{k}-\psi^{k}\right)$ where $b_{j k} \in$ \mathbb{C} and $1 \leq j \leq n$. Since $\phi^{n+1}-\psi^{n+1}=\sum_{j=1}^{n=1}\left\langle z^{n+1}, x_{j}\right\rangle y_{j}, f=z^{n+1}-$ $\sum_{j=1}^{n} \sum_{k=1}^{n}\left\langle z^{n+1}, x_{j}\right\rangle b_{j k} z^{j}$ is the requested one.
Corollary 1. Let ϕ and ψ be self-maps of $\mathcal{D} . C_{\phi}-C_{\psi}$ is of rank 0 if and only if $\phi \equiv \psi \cdot C_{\phi}-C_{\psi}$ is of rank 1 if and only if ϕ and ψ are constants, and $\phi \not \equiv \psi$.
Proof. The first statement is clear. We will show the second statement. The 'if' part is clear. We will show the 'only if' part. Suppose $C_{\phi}-C_{\psi}=x \otimes y$. If $\langle z, x\rangle=0$ then $\phi \equiv \psi$. Hence we may assume $\langle z, x\rangle \neq 0$ and so $y=(\phi-\psi) /\langle z, x\rangle$. If $\left\langle z^{2}, x\right\rangle=0$ then $\phi^{2}-\psi^{2} \equiv 0$ and so $\psi \equiv-\phi$. Since $f \circ \phi-f \circ(-\phi)=2 \phi\langle f, x\rangle /\langle z, x\rangle$, $2 \phi^{3}=2 \phi\left\langle z^{3}, x\right\rangle /\langle z, x\rangle$ and so ϕ is constant. If $\left\langle z^{2}, x\right\rangle \neq 0, \phi^{2}-\psi^{2}=\frac{\left\langle z^{2}, x\right\rangle}{\langle z, x\rangle}(\phi-\psi)$ and so $\phi+\psi \equiv a$ for some complex constant a. When $\left\langle z^{3}, x\right\rangle=0, \phi^{3}-\psi^{3} \equiv 0$ and so $\phi^{2}+\phi \psi+\psi^{2} \equiv 0$. When $\left\langle z^{3}, x\right\rangle \neq 0$,

$$
\phi^{3}-\psi^{3}=\frac{\left\langle z^{3}, x\right\rangle}{\langle z, x\rangle}(\phi-\psi)
$$

and so $\phi^{2}+\phi \psi+\psi^{2} \equiv b$ for some complex constant b. Hence when $\left\langle z^{2}, x\right\rangle \neq 0$ then $\phi+\psi \equiv a$ and $\phi^{2}+\phi \psi+\psi^{2} \equiv b$. Therefore $\phi^{2}-a \phi+a^{2}-b=0$. This shows ϕ and ψ are constant.

When \mathcal{D} is the open unit disc, an inner function q in $H^{2}(\mathcal{D})$ means a unimodular function in $\partial \mathcal{D}$ and sing q denotes the subset of $\partial \mathcal{D}$ on which q can not be analytically extended.

Corollary 2. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi}-C_{\psi}$ is of finite rank. If ϕ and ψ are inner then sing $\phi=\operatorname{sing} \psi$.
Corollary 3. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi}-C_{\psi}$ is of finite rank n. When ϕ and ψ are inner, if ϕ is a finite Blaschke product of degree n then $\phi \equiv \psi$.
Proof. Let f be a polynomial in Theorem 3. By Corollary 2, ψ is also a finite Blaschke product. If ϕ has a pole at z_{0} with multiplicity ℓ then so does ψ. This shows $\phi \equiv \alpha \psi$ for some constant α.

Corollary 4. Let \mathcal{D} be the open unit disc. Suppose $C_{\phi}-C_{\psi}$ is of finite rank n. When ϕ and ψ be inner, if ϕ is a Blaschke product then $\psi=\phi s$ and s is a singular inner with sing $s \subseteq \operatorname{sing} \phi$.
Proof. Since f is a polynomial with $f(0)=0$, if ϕ has a pole at z_{0} with multiplicity ℓ then so does the Blaschke part of ψ. This and Corollary 2 show the corollary.
Theorem 4. Let \mathcal{D} be a domain in \mathbb{C} and $H^{2}(\mathcal{D})$ a Hilbert space of holomorphic functions on \mathcal{D}. Suppose $H^{2}(\mathcal{D})$ contains all polynomials. Let $X=\mathcal{D}$. If $C_{\phi}-C_{\psi}$ is of finite rank $n \neq 0$ on $H^{2}(\mathcal{D})$ then for any enough large ℓ

$$
\phi^{\ell}-\psi^{\ell}=\sum_{j=1}^{n} b_{\ell j}\left(\phi^{S_{0}(j)}-\psi^{S_{0}(j)}\right)
$$

where $\left\{S_{0}(j)\right\}_{j=1}^{n}$ is a fixed subset of natural numbers.
Proof. For $t \geq 1$, put $a_{t j}=\left\langle z^{t}, x_{j}\right\rangle(1 \leq j \leq n)$. Then by Lemma $2 \phi^{t}-\psi^{t}=$ $\sum_{j=1}^{n} a_{t j} y_{j}$. When $S=\{S(i)\}_{i=1}^{n}$ is a subset of natural numbers and $S(i) \leq S(i+1)$, we write $\mathbf{a}_{S}=\left[a_{S(i) j}\right]_{n \times n}$. Put $r=\max _{S} r\left(\mathbf{a}_{S}\right)$ where $r\left(\mathbf{a}_{s}\right)$ denotes the rank of \mathbf{a}_{s} and $r=r\left(\mathbf{a}_{S_{0}}\right)$. If $\ell>S_{0}(n)$, then there exist $b_{1 \ell}, \cdots, b_{n \ell}$ in \mathbb{C} such that

$$
\phi^{\ell}-\psi^{\ell}=\sum_{j=1}^{n} b_{\ell j}\left(\phi^{S_{0}(j)}-\psi^{S_{0}(j)}\right) .
$$

Theorem 5. Let \mathcal{D} be a bounded domain in \mathbb{C} and $A(\mathcal{D})$ a set of holomorphic functions on \mathcal{D} which are continuous on $\mathcal{D} \cup \partial \mathcal{D}$. Let $X=\mathcal{D} \cup \partial \mathcal{D}$. If $C_{\phi}-C_{\psi}$ is of finite rank n on $A(\mathcal{D})$ then there exists a polynomial f which is of degree $\leq n$ and $f \circ \phi=f \circ \psi$.
Proof. Since $z \in A(\mathcal{D}), \phi$ and ψ belong to $A(\mathcal{D}), \phi(\mathcal{D}) \subseteq \mathcal{D}$ and $\psi(\mathcal{D}) \subseteq \mathcal{D}$. Suppose $C_{\phi}-C_{\psi}$ is of finite rank n. If $n=0$ then the conclusion is clear and so we may assume $n \geq 1$. Then there exist $\left\{\mu_{j}\right\}_{j=1}^{n}$ in $C(X)^{*}$ and $\left\{y_{j}\right\}_{j=1}^{n}$ in $A(\mathcal{D})$ such that

$$
\left(C_{\phi}-C_{\psi}\right)(g)=\sum_{j=1}^{n}\left(\int_{X^{\prime}} g d \mu_{j}\right) y_{j} \quad(g \in A(\mathcal{D}))
$$

where $\left\{\mu_{j}+A(\mathcal{D})^{\perp} \cap C(X)^{*}\right\}_{j=1}^{n}$ is independent in $C(X)^{*} / A(\mathcal{D})$. Now we can prove as in the proof of Theorem 3.
Corollary 5. Let ϕ and ψ be self-maps of $\mathcal{D} . C_{\phi}-C_{\psi}$ is of rank 0 if and only if $\phi \equiv \psi . C_{\phi}-C_{\psi}$ is of rank 1 if and only if ϕ and ψ are constants, and $\phi \neq \psi$.
Proof. The proof is similar to that of Corollary 1.
Corollary 6. Let \mathcal{D} be an open unit disc. Suppose $C_{\phi}-C_{\psi}$ is of finite rank. If ϕ and ψ are inner then ϕ and ψ are Blaschke products and $\phi \equiv \alpha \psi$ for some some constant α.
Proof. Since ϕ and ψ belong to $A(\mathcal{D})$, both ϕ and ψ are finite Blaschke products. By Theorem $5 \psi \equiv \alpha \psi$ for some constant α.
Theorem 6. Let \mathcal{D} be a bounded domain in \mathbb{C} and $A(\mathcal{D})$ a set of holomorphic functions on \mathcal{D} which are continuous on $\mathcal{D} \cup \partial \mathcal{D}$. Let $X=\mathcal{D} \cup \partial \mathcal{D}$. If $C_{\phi}-C_{\psi}$ is of finite rank n on $A(\mathcal{D})$ then for any enough large ℓ

$$
\phi^{\ell}-\psi^{\ell}=\sum_{j=1}^{n} b_{\ell j}\left(\phi^{S_{0}(j)}-\psi^{S_{0}(j)}\right)
$$

where $\left\{S_{0}(j)\right\}_{j=1}^{n}$ is a fixed subset of natural number.
Proof. The proofs of Theorem 4 and 5 show the theorem.

References

[1] E. Berkson, Composition operators isolated in the uniform operator topology, Proc. Amer. Math. Soc., 81(1981), 230-232.
[2] H. Kamowitz, Compact weighted endomorphisms of $C(X)$, Proc. Amer. Math. Soc., 83(1981), 517-521.
[3] B. D. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on H^{∞}, Integr. Eq. Op. Th., 40(2001), 481-494.
[4] E. A. Nordgren, Composition operators on Hilbert spaces, Hilbert Space Operators, Lecture Notes in Math., 693, Springer-Verlag, Berlin, Heidelberg, and New York, (1978), 37-63.
[5] J. H. Shapino and C. Sundberg, Isolation amongst the composition operators, Pacific. J. Math., 145(1990), 117-152.
[6] R. K. Singh and R. D. C. Kumar, Compact weighted composition operators on $L^{2}(\lambda)$, Acta Sci. Math., 49(1985), 339-344.
[7] H. Takagi, Compact weighted composition operators on L^{p}, Proc. Amer. Math. Soc., 116(1992), 505-511.
[8] H. Takagi, Fredholm weighted composition operators, Integr. Equat. Oper. Th., $\mathbf{1 6 (1 9 9 3) , ~ 2 6 7 - 2 7 6 . ~}$

