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Abstract. A finite rank difference of two composition operators is studied on a Hilbert

Lebesgue space or a Hilbert Hardy space.

1. Introduction

Let (X, B,m) be a finite complete Borel measure space and let φ : X → X
be a measurable transformation, that is, φ−1(E) ∈ B for any E ∈ B. As a typical
example of (X, B,m), (1) X is a unit circle ∂D or a closed unit disc ∂D∪D, (2) B is
a Borel σ-algebra, (3) m is a normalized Lebesgue measure on ∂D or a normalized
area measure on ∂D ∪D.

L2 = L2(∂D) denotes the usual Lebesgue space and H2 = H2(D) denotes the
usual Hardy space. Let C = C(∂D) be the set of all continuous functions on ∂D
and A = A(D) the disc algebra on D̄.

For a measurable function f on X, (Cφf)(z) = f(φ(z)) (z ∈ X). If Cφ is an
operator defined on L2, C, H2 or A then φ belongs to L2, C, H2 or A, respectively.
For we can choose z as f . It is known that Cφ is bounded on L2 if and only
if m(φ−1(E)) ≤ γm(E) (E ∈ B) where γ = γφ is possitive constant andγ ≥ 1.
Clearly, Cφ is bounded on C. It is well-known that Cφ is bounded on H2 and it is
easy to see that Cφ is bounded on A. Many mathematicians have been interested
in composition operators. For example, see [6], [7] on L2, [2], [6], [8] on C(X) and
[3] on H2. A difference of two composition operators has been studied on H2 or A
(see [1], [5], [3]).

In this paper, we study when Cφ −Cψ is of finite rank in very general setting.

2. Case of L2 and C

(X, B,m) denotes a finite complete Borel measure space in Theorem 1 and X
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is a compact Hausdorff space in Theorem 2. L2 = L2(X,m) is a set of square
summable functions with respect to m and C = C(X) is a set of all continuous
functions on X.

Lemma 1. Suppose a measurable subset E in X with m(E) > 0 and m does not
have a point mass. If Cφ−Cψ is of finite rank n on L2 and it is zero on χEL2 then
Cφ − Cψ is of finite rank n on (1− χE)L2.

Proof. We may assume n 6= 0. Hence there exist {fj}n
j=1 and {gj}n

j=1 in L2 such

that (Cφ − Cψ)(f) =
∑n

j=1〈f, fj〉gj where 〈f, fj〉 =
∫

ff̄jdm (f ∈ L2). Since

(Cφ − Cψ)(χEf) =
∑n

j=1〈χEf, fj〉gj = 0 (f ∈ L2), fj = 0 on E for any 1 ≤ j ≤ n.
Hence Cφ − Cψ is of finite rank n on (1− χE)L2. 2

Theorem 1. Suppose m does not have a point mass. (1) Cφ can not be of finite
rank. (2) If Cφ − Cψ is of finite rank on L2 then Cφ = Cψ.

Proof. (1) Put Y = φ(X). Since χY L2 = {f ◦ φ : f ∈ L2} and m does not have a
point mass, χY L2 = {0} when dim(χY L2) < ∞. Hence we may assume f ◦ φ = 0
a.e. for any f ∈ L2. This shows the rank is zero.

(2) We may assume m({z ∈ X : φ(z) 6= ψ(z)}) > 0. Since m does not have a
point mass, {z ∈ X : φ(z) 6= ψ(z)} is an uncountable set. Hence there exists a point
ζ ∈ X such that m(φ−1(ζ)) = 0 and m(ψ−1(ζ)) = 0. Then m(φ−1(ζ)∪ψ−1(ζ)) = 0.
If Cφ − Cψ is of finite rank n 6= 0 then there exist {fj}n

j=1 and {gj}n
j=1 in L2 such

that

(Cφ − Cψ)(f) =
n∑

j=1

〈f, fj〉gj (f ∈ L2)

where 〈f, fj〉 =
∫

X
ff̄jdm. By Lemma 1, there exists a Borel subset E1 such that

ζ ∈ E1 and 〈χE1 , f1〉 6= 0. Again, by Lemma 1, there exists a Borel subset E2 such
that ζ ∈ E2 and 〈χE2 , f1〉 6= 0 and χE1 ≥/ χE2 . Repeating this process, we get a
Borel sequence subset {En} such that En ⊇/ En+1 and

⋂
n En = {ζ} and

〈χE`
, f1〉 6= 0 (` = 1, 2, · · · ).

Then ∞⋂
n=1

φ−1(En) = {φ−1(ζ)} and
∞⋂

n=1

ψ−1(En) = {ψ−1(ζ)}.

Since (Cφ − Cψ)(χE`
) = χφ−1(E`) − χψ−1(E`),

n∑

j=1

〈χE`
, fj〉gj(z) = 0 (z ∈ φ−1(E`)c ∩ ψ−1(E`)c).

Put F` = φ−1(E`)c ∩ ψ−1(E`)c. Since m(φ−1(ζ) ∪ ψ−1(ζ)) = 0, m(F`) → 1 as
` →∞. Put a`j = 〈χE`

, fj〉 for 1 ≤ j ≤ n and ` = 1, 2, · · · . Then for any `

a`1g1(z) + a`2g2(z) + · · ·+ a`ngn(z) = 0 (z ∈ F`)
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and a`1 6= 0. Put |a`k(`)| = max(|a`1|, · · · , |a`n|) for each `. Then there exists k0(`0)
such that k0(`0) = k0(`) for infinitely many `. Hence by choosing a subsequence,
we may assume |a`1| = 1 and |a`j | ≤ 1 (1 ≤ j ≤ n, 1 ≤ ` < ∞). Again by
choosing a subsequence, we may assume lim`→∞ a`j = aj (1 ≤ j ≤ n). Then
a1g1(z) + a2g2(z) + · · · + angn(z) = 0 a.e.z because lim`→∞m(F`) = 1. Since
a1 6= 0 and {gj}n

j=1 is an independent set, it is a contradiction. Therefore n = 0
and Cφ = Cψ. 2

Theorem 2. Suppose X is a compact Hausdorff space and an infinite set. If
Cφ − Cψ is of finite rank on C(X) then φ = ψ except some finite set.

Proof. Suppose Cφ−Cψ is of finite rank n 6= 0. Then there exist measures {µj}n
j=1

on X and functions {ej}n
j=1 in C(X) such that

(Cφ − Cψ)(f) =
n∑

j=1

(
∫

fdµj)ej (f ∈ C(X))

where {µj}n
j=1 is an independent set of C(X)∗ and {ej}n

j=1 is an independent set
of C(X). Hence for any z ∈ X,

f(φ(z))− f(ψ(z)) =
n∑

j=1

αj(f)(ej(z))

where f ∈ C(X) and αj(f) =
∫

fdµj (1 ≤ j ≤ n). For fixed z ∈ X, put

Y (z) = {(α1(f), · · · , αn(f)) : f ∈ C(X) and f(φ(z)) = f(ψ(z))}.
Since {µj}n

j=1 is an independent set in C(X)∗, it is easy to see that Y (z) = Cn

for each z except a finite set in X. In fact, if F = {z ∈ X : φ(z) = ψ(z)} then
{δφ(z)−δψ(z)}z∈X\F is an independent set in C(X)∗ where δφ(z) and δψ(z) are Dirac
measures. When X\F is a finite subset, we need not to prove it. Suppose X\F
is an infinite subset of X. For z ∈ X\F , suppose δφ(z) − δψ(z) is not in the linear
span of {µ1, · · · , µn}. Then, for each 1 ≤ j ≤ n there exists fj in C(X) such that
fj = 0 on {δφ(z)−δψ(z), µ1, · · · , µn}\{µj} and

∫
fdµj = 1. This shows for z ∈ X\F

Y (z) = Cn. Hence Y (z) = Cn for each z except a finite set E in X\F . Hence for
z ∈ X\E

n∑

j=1

αj(f) ej(z) = 0 and Y (z) = Cn

and so ej(z) = 0 (j = 1, · · · , n). Thus for any f in C(X)f ◦ φ(z) ≡ f ◦ ψ(z) (z ∈
X\E). Therefore φ(z) = ψ(z) (z ∈ X\E).

3. Case of H2 and A

Let X be a domain D in C or ∂D ∪D. We assume A(D) and H2(D) contain
all polynomials.
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Lemma 2. If Cφ − Cψ is of finite rank n 6= 0 on H2(D) then for any ` ≥ 1
φ`−ψ` =

∑n
j=1〈z`, xj〉yj where {xj}n

j=1 and {yj}n
j=1 are independent sets in H2(D).

Proof. Since Cφ − Cψ is of finite rank n 6= 0, there exist {xj}n
j=1 and {yj}n

j=1 in
H2(D) such that Cφf − Cψf =

∑n
j=1〈f, xj〉yj (f ∈ H2). Suppose f = z`. 2

Theorem 3. Let D be a domain in C and H2(D) a Hilbert space of holomorphic
functions on D. Let X = D. If Cφ − Cψ is of finite rank n on H2(D) then there
exists a nonzero polynomial f which is of degree ≤ n+1, f(0) = 0 and f ◦φ = f ◦ψ.

Proof. Since z ∈ H2(D), φ and ψ are holomorphic on D. Since Cφ and Cψ are
defined on H2(D), φ(D) ⊆ D and ψ(D) ⊆ D. Suppose Cφ − Cψ is of finite rank n.
If n = 0 then the conclusion is clear and so we may assume n ≥ 1. Then by Lemma
2

φi − ψi =
n∑

j=1

〈zi, xj〉yj =
n∑

j=1

aijyj .

Let a = [aij ]n×n be the matrix defined by aij (1 ≤ i ≤ n, 1 ≤ j ≤ n) and
ai = (ai1, · · · , ain) (1 ≤ i ≤ n). If det a = 0 then we may assume a1 =

∑n
j=2 λjaj .

Hence a1j =
∑n

i=2 λiaij (1 ≤ j ≤ n) and so

φ− ψ =
n∑

j=1

a1jyj =
n∑

j=1

(
n∑

i=2

λiaij)yj

=
n∑

i=2

λi(
n∑

j=1

aijyj) =
n∑

i=2

λi(φi − ψi).

Therefore the polynomial f = z −∑n
i=2 λiz

i is the requested one.
If det a 6= 0 then yj can be written as

∑n
k=1 bjk(φk − ψk) where bjk ∈

C and 1 ≤ j ≤ n. Since φn+1 − ψn+1 =
∑n

j=1〈zn+1, xj〉yj , f = zn+1 −∑n
j=1

∑n
k=1〈zn+1, xj〉bjkzj is the requested one. 2

Corollary 1. Let φ and ψ be self-maps of D. Cφ − Cψ is of rank 0 if and only if
φ ≡ ψ. Cφ − Cψ is of rank 1 if and only if φ and ψ are constants, and φ 6≡ ψ.

Proof. The first statement is clear. We will show the second statement. The
‘if’ part is clear. We will show the ‘only if’ part. Suppose Cφ − Cψ = x ⊗ y. If
〈z, x〉 = 0 then φ ≡ ψ. Hence we may assume 〈z, x〉 6= 0 and so y = (φ−ψ)/〈z, x〉. If
〈z2, x〉 = 0 then φ2−ψ2 ≡ 0 and so ψ ≡ −φ. Since f ◦φ−f ◦(−φ) = 2φ〈f, x〉/〈z, x〉,
2φ3 = 2φ〈z3, x〉/〈z, x〉 and so φ is constant. If 〈z2, x〉 6= 0, φ2−ψ2 =

〈z2, x〉
〈z, x〉 (φ−ψ)

and so φ + ψ ≡ a for some complex constant a. When 〈z3, x〉 = 0, φ3 −ψ3 ≡ 0 and
so φ2 + φψ + ψ2 ≡ 0. When 〈z3, x〉 6= 0,

φ3 − ψ3 =
〈z3, x〉
〈z, x〉 (φ− ψ)
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and so φ2 +φψ +ψ2 ≡ b for some complex constant b. Hence when 〈z2, x〉 6= 0 then
φ + ψ ≡ a and φ2 + φψ + ψ2 ≡ b. Therefore φ2 − aφ + a2 − b = 0. This shows φ
and ψ are constant. 2

When D is the open unit disc, an inner function q in H2(D) means a unimod-
ular function in ∂D and sing q denotes the subset of ∂D on which q can not be
analytically extended.

Corollary 2. Let D be the open unit disc. Suppose Cφ −Cψ is of finite rank. If φ
and ψ are inner then sing φ = sing ψ.

Corollary 3. Let D be the open unit disc. Suppose Cφ − Cψ is of finite rank n.
When φ and ψ are inner, if φ is a finite Blaschke product of degree n then φ ≡ ψ.

Proof. Let f be a polynomial in Theorem 3. By Corollary 2, ψ is also a finite
Blaschke product. If φ has a pole at z0 with multiplicity ` then so does ψ. This
shows φ ≡ αψ for some constant α.

Corollary 4. Let D be the open unit disc. Suppose Cφ − Cψ is of finite rank n.
When φ and ψ be inner, if φ is a Blaschke product then ψ = φs and s is a singular
inner with sing s ⊆ sing φ.

Proof. Since f is a polynomial with f(0) = 0, if φ has a pole at z0 with multiplicity
` then so does the Blaschke part of ψ. This and Corollary 2 show the corollary. 2

Theorem 4. Let D be a domain in C and H2(D) a Hilbert space of holomorphic
functions on D. Suppose H2(D) contains all polynomials. Let X = D. If Cφ − Cψ

is of finite rank n 6= 0 on H2(D) then for any enough large `

φ` − ψ` =
∑n

j=1 b`j(φS0(j) − ψS0(j))

where {S0(j)}n
j=1 is a fixed subset of natural numbers.

Proof. For t ≥ 1, put atj = 〈zt, xj〉 (1 ≤ j ≤ n). Then by Lemma 2 φt − ψt =∑n
j=1 atjyj . When S = {S(i)}n

i=1 is a subset of natural numbers and S(i) ≤ S(i+1),
we write aS = [aS(i)j ]n×n. Put r = maxS r(aS) where r(as) denotes the rank of as

and r = r(aS0). If ` > S0(n), then there exist b1`, · · · , bn` in C such that

φ`−ψ` =
n∑

j=1

b`j(φS0(j)−ψS0(j)). 2

Theorem 5. Let D be a bounded domain in C and A(D) a set of holomorphic
functions on D which are continuous on D ∪ ∂D. Let X = D ∪ ∂D. If Cφ − Cψ

is of finite rank n on A(D) then there exists a polynomial f which is of degree ≤ n
and f ◦ φ = f ◦ ψ.

Proof. Since z ∈ A(D), φ and ψ belong to A(D), φ(D) ⊆ D and ψ(D) ⊆ D.
Suppose Cφ−Cψ is of finite rank n. If n = 0 then the conclusion is clear and so we
may assume n ≥ 1. Then there exist {µj}n

j=1 in C(X)∗ and {yj}n
j=1 in A(D) such

that



130 Takahiko Nakazi

(Cφ − Cψ)(g) =
∑n

j=1(
∫

X

gdµj)yj (g ∈ A(D))

where {µj +A(D)⊥∩C(X)∗}n
j=1 is independent in C(X)∗/A(D). Now we can prove

as in the proof of Theorem 3. 2

Corollary 5. Let φ and ψ be self-maps of D. Cφ − Cψ is of rank 0 if and only if
φ ≡ ψ. Cφ − Cψ is of rank 1 if and only if φ and ψ are constants, and φ 6= ψ.

Proof. The proof is similar to that of Corollary 1. 2

Corollary 6. Let D be an open unit disc. Suppose Cφ − Cψ is of finite rank. If φ
and ψ are inner then φ and ψ are Blaschke products and φ ≡ αψ for some some
constant α.

Proof. Since φ and ψ belong to A(D), both φ and ψ are finite Blaschke products.
By Theorem 5 ψ ≡ αψ for some constant α. 2

Theorem 6. Let D be a bounded domain in C and A(D) a set of holomorphic
functions on D which are continuous on D ∪ ∂D. Let X = D ∪ ∂D. If Cφ − Cψ is
of finite rank n on A(D) then for any enough large `

φ` − ψ` =
∑n

j=1 b`j(φS0(j) − ψS0(j))

where {S0(j)}n
j=1 is a fixed subset of natural number.

Proof. The proofs of Theorem 4 and 5 show the theorem. 2
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