DOI QR코드

DOI QR Code

Live Cell Detection of Monoclonal Antibody Light and Heavy Chain mRNAs using Molecular Beacons

분자 비컨을 이용한 살아 있는 세포에서 단일클론항체 경쇄와 중쇄 mRNA 검출에 의한 세포주 선별방법

  • Jeong, Seunga (Division of Bioengineering, Incheon National University) ;
  • Rhee, Won Jong (Division of Bioengineering, Incheon National University)
  • 정승아 (인천대학교 생명공학부) ;
  • 이원종 (인천대학교 생명공학부)
  • Received : 2015.12.03
  • Accepted : 2016.02.10
  • Published : 2016.03.31

Abstract

Developing the method for the selection of animal cell line producing therapeutic monoclonal antibody (mAb) is invaluable as its market is rapidly growing. Although the quality of produced mAb is as important as quantity, however there is no method developed for the selective screening of cell lines on the basis of both quantity and quality. From recent reports, the ratio of light and heavy chain mRNAs of mAb in the cell is a key parameter for the indication of product quality. Therefore, it is obvious that developing the novel method that can detect both light and heavy chain mRNAs in single live cell will provide unprecedented opportunities in bio-industry. Here, we have constructed oligonucleotide probes, molecular beacons for the detection of light or heavy chain mRNAs, respectively, in the live cells producing mAbs. Both beacons showed increased fluorescent intensity after transient transfection of plasmid expressing mAbs analyzed by fluorometer. Flow cytometric analysis clearly demonstrated that both molecular beacons can simultaneously detect the expression of light and heavy chain mRNAs of mAb in the same cell. The technique described in the thesis provides the new direction and concept for developing the method for the smart selection of cell lines producing recombinant proteins including therapeutic mAbs.

Keywords

References

  1. Browne, S. M. and M. Al-Rubeai (2007) Selection methods for high-producing mammalian cell lines. M. Trend Biotechnol. 9: 425-432.
  2. Lee, C. J., G. Seth, J. Tsukuda, and R. W. Hamilton (2009) A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnolol. Bioeng. 102: 1107-1118. https://doi.org/10.1002/bit.22126
  3. de la Cruz Edmonds, M. C., M. Tellers, C. Chan, P. Salmon, D. K. Robinson, and J. Markusen (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol. Biotechnol. 34: 179-190. https://doi.org/10.1385/MB:34:2:179
  4. Fussenegger, M., J. E. Bailey, H. Hauser, and P. P. Mueller (1999) Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 17: 35-42. https://doi.org/10.1016/S0167-7799(98)01248-7
  5. Wurm, F. M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393-1398. https://doi.org/10.1038/nbt1026
  6. De Maria, C. T., V. Cairns, C. Schwarz, J. Zhang, M. Guerin, E. Zuena, S. Estes, and K. P. Karey (2007) Accelerated clone selection for recombinant CHO cells using a FACS-based high-throughput screen. Biotechnol. Prog. 23: 465-472. https://doi.org/10.1021/bp060298i
  7. Dorai, H., B. Csirke, B. Scallon, and S. Ganguly (2006) Correlation of heavy and light chain mRNA copy numbers to antibody productivity in mouse myeloma production cell lines. Hybridoma. 25: 1-9. https://doi.org/10.1089/hyb.2006.25.1
  8. Barnes, L. M. and A. J. Dickson (2006) Mammalian cell factories for efficient and stable protein expression. Curr. Opin. Biotechnol. 17: 381-386. https://doi.org/10.1016/j.copbio.2006.06.005
  9. Andersen, D. C. and L. Krummen (2002) Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117-123. https://doi.org/10.1016/S0958-1669(02)00300-2
  10. Han, S. X., X. Jia, J. L. Ma, and Q. Zhu (2013) Molecular beacons: A novel optical diagnostic tool. Arch. Immunol. 61: 139-148. https://doi.org/10.1007/s00005-012-0209-7
  11. Tyagi, S. and F. R. Kramer (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14: 303-308. https://doi.org/10.1038/nbt0396-303
  12. Antony, T. and V. Subramaniam (2001) Molecular beacons: Nucleic acid hybridization and emerging applications. J. Biomol. Struct. Dyn. 19: 497-504. https://doi.org/10.1080/07391102.2001.10506757
  13. Deiman, B., C. Schrover, C. Moore, D. Westmoreland, and P. van de Wiel (2007) Rapid and highly sensitive qualitative real-time assay for detection of respiratory syncytial virus A and B using NASBA and molecular beacon technology. J. Virol. Methods. 46: 29-35.
  14. Liu, B., X. Yang, K. Wang, and W. Tan (2010) Quantitative detection of p21 mRNA in tumor cells based on molecular beacon. Acta Chim. Sinica. 68: 1303-1307.
  15. Nitin, N., P. J. Santangelo, G. Kim, S. Nie, G. Bao (2004) Peptide linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res. 32: e58. https://doi.org/10.1093/nar/gnh063
  16. Perlette, J. and W. Tan (2001) Real-time monitoring of intracellular mRNA hybridization inside single living cells. Anal. Chem. 73: 5544-5550. https://doi.org/10.1021/ac010633b
  17. Li, Y., X. Zhou, and D. Ye (2008) Molecular beacons: An optimal multifunctional biological probe. Biochem. Biophys. Res. Commun. 373: 457-461. https://doi.org/10.1016/j.bbrc.2008.05.038
  18. Monroy-Contreras, R. and L. Vaca (2011) Molecular beacons: Powerful tools for imaging RNA in living cells. J. Nucleic Acids. 2011: 741723.
  19. Hadjinicolaou, A. V., G. A. Farcas, V. L. Demetriou, T. Mazzulli, S. M. Poutanen, B. M. Willey, D. E. Low, J. Butany, S. L. Asa, K. C. Kain, and L. G. Kostrikis (2011) Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): A general methodology for detecting rapidly mutating viruses. Arch. Virol. 156: 671-680. https://doi.org/10.1007/s00705-010-0906-7
  20. Sum, S. S., D. K. Wong, M. F. Yuen, H. J. Yuan, J. Yu, C. L. Lai, D. Ho, and L. Zhang (2004) Real-time PCR assay using molecular beacon for quantitation of hepatitis B virus DNA. J. Clin. Microbiol. 42: 3438-3440. https://doi.org/10.1128/JCM.42.8.3438-3440.2004
  21. Tsourkas, A., M. A. Behlke, Y. Xu, and G. Bao (2003) Spectroscopic features of dual fluorescence/luminescence resonance energy-transfer molecular beacons. Anal. Chem. 75: 3697-3703. https://doi.org/10.1021/ac034295l
  22. Santangelo, P. J., B. Nix, A. Tsourkas, and G. Bao (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acid Res. 32: e57. https://doi.org/10.1093/nar/gnh062
  23. Rhee, W. J., P. J. Santangelo, H. Jo, and G. Bao (2008) Target accessibility and signal specificity in live-cell detection of BMP-4 mRNA using molecular beacons. Nucleic Acid Res. 36: e30. https://doi.org/10.1093/nar/gkn039