참고문헌
- J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
-
Y. Nishida, K. Nakane and T. Satoh, 'Synthesis and properties of gallium-doped
$LiNiO_2$ as the cathode material for lithium secondary batteries', J. Power Sources, 68, 561 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4 -
S. Yamada, M. Fujiwara and M. Kanda, 'Synthesis and properties of
$LiNiO_2$ as cathode material for secondary batteries', J. Power Sources, 54, 209 (1995). https://doi.org/10.1016/0378-7753(94)02068-E -
P. Kalyani and N. Kalaiselvi, 'Various aspects of
$LiNiO_2$ chemistry: A review', Sci. Technol. Adv. Mater., 6, 689 (2005). https://doi.org/10.1016/j.stam.2005.06.001 -
D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V
$Li/Li_xMn_2O_4$ cells', J. Electrochem. Soc., 143, 2204 (1996). https://doi.org/10.1149/1.1836981 -
A. R. Armstrong, A. J. Paterson, A. D. Robertson, and P. G. Bruce, 'Nonstoichiometric layered
$Li_xMn_yO_2$ with a high capacity for lithium intercalation/deintercalation', Chem. Mater., 14, 710 (2002). https://doi.org/10.1021/cm010382n -
T. Liu, S.-X. Zhao, K. Wang and C.-W. Nan, 'CuO-coated
$Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material with improved cycling performance at high rates', Electrochim. Acta, 85, 605 (2012). https://doi.org/10.1016/j.electacta.2012.08.101 -
Y. Huang, F.-M. Jin, F.-J. Chen and L. Chen, 'Improved cycle stability and high-rate capability of
$Li_3VO_4$ -coated$Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material under different voltages', J. Power Sources, 256, 1 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.003 -
W. Liu, M. Wang, X. L. Gao, W. Zhang, J. Chen, H. Zhou and X. Zhang, 'Improvement of the hightemperature, high-voltage cycling performance of
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode with$TiO_2$ coating', J. Alloys Compds., 543, 181 (2012). https://doi.org/10.1016/j.jallcom.2012.07.074 -
Y. Bai, X. Wang, S. Yang, X. Zhang, X. Yang, H. Shu and Q. Wu, 'The effects of
$FePO_4$ -coating on high-voltage cycling stability and rate capability of$Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ ', J. Alloys Compds., 541, 125 (2012). https://doi.org/10.1016/j.jallcom.2012.06.101 -
J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li and F. Zhou, 'Ultrathin ZnO coating for improved electrochemical performance of
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material', J. Power Sources, 266, 433 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.027 -
H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, 'Comparison of the structural and electrochemical properties of layered
$Li[Ni_xCo_yMn_z]O2$ (x =1/4 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries', J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063 - M. Moshkovich, M. Cojocaru, H. E. Gottlieb and D. Aurbach, 'The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS', J. Electroanal. Chem., 497, 84 (2001). https://doi.org/10.1016/S0022-0728(00)00457-5
- H.-K. Park, 'The research and development trend of cathode materials in lithium ion battery', J. Korean Electrochem. Soc., 11, 197 (2008). https://doi.org/10.5229/JKES.2008.11.3.197
- A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries', Electrochem. Commun., 11, 1073 (2009). https://doi.org/10.1016/j.elecom.2009.03.020
- T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries', J. Electrochem. Soc., 156, A483 (2009). https://doi.org/10.1149/1.3111904
-
Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim and S.-W. Song, 'Interfacial origin of performance improvement and fade for 4.6 V
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ battery cathodes', J. Phys. Chem. C, 118, 10631 (2014). -
H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M, Jung and S.-W. Song, 'Performance enhancement of 4.8 V
$Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ battery cathode using fluorinated linear carbonate as a high-voltage additive', J. Electrochem. Soc., 161, A2002 (2014). https://doi.org/10.1149/2.1141412jes - Y. Watanabe, S. Kinoshita, S. Wada, K. Hoshino, H. Morimoto and S. Tobishima, 'Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells', J. Power Sources, 179, 770-779 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.006
- K. Xu and C. A. Angell, 'High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone', J. Electrochem. Soc., 145, 70 (1998). https://doi.org/10.1149/1.1838213
- N. Shao, X. Sun, S. Dai and D. Jiang, 'Oxidation potentials of functionalized sulfone solvents for highvoltage Li-ion batteries: A computational study', J. Phys. Chem., 116, 3235 (2012). https://doi.org/10.1021/jp211619y
- K. Xu and C. A. Angell, 'Sulfone-based electrolytes for lithium-ion batteries', J. Electrochem. Soc., 149, A920 (2002). https://doi.org/10.1149/1.1483866
- S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, 'Recent progress in research on high-voltage electrolytes for lithium-ion batteries', Chem phys chem, 15, 1956 (2014). https://doi.org/10.1002/cphc.201402175
- L. Xue, S.-Y. Lee, Z. Zhao and C. A. Angell, 'Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries', J. Power Sources, 295, 190 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.112
- R. Wagner, S. Brox, J. Kasnatscheew, D. R. Gallus, M. Amereller, I. Cekic-Laskovic and M. Winter, 'Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries', Electrochem. Commun., 40, 80 (2014). https://doi.org/10.1016/j.elecom.2014.01.004
- A. Manthiram and J. Kim, 'Low temperature synthesis of insertion oxides for lithium batteries', Chem. Mater., 10, 2895 (1998). https://doi.org/10.1021/cm980241u
-
F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick and A. Garsuch, 'Study of the lithium-rich integrated compound
$xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (x around 0.5;M= Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells', J. Electrochem. Soc., 160, A324 (2012). https://doi.org/10.1149/2.070302jes - R. Aroca, M. Nazri, G. A. Nazri, A. J. Camaro and M. Trsic, 'Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries', J. Solution Chem., 29, 1047 (2000). https://doi.org/10.1023/A:1005151220893
-
S.-W. Song, G. V. Zhuang and P. N. Ross, 'Surface film formation on
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes using attenuated total reflection IR spectroscopy', J. Electrochem. Soc., 151, A1162 (2004). https://doi.org/10.1149/1.1763771 - G. V. Zhuang and P. N. Ross, 'Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy', Electrochem. Solid-State Lett., 6, A136 (2003). https://doi.org/10.1149/1.1575594
- G. Socrates, "Infrared Characteristic Group Frequencies, Table and Charts, Second Edition", John Wiley & Sons, New York, (1994).
- S.-W. Song and S.-W. Baek, 'Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries', Electrochem. Solid-State Lett., 12, A23 (2009). https://doi.org/10.1149/1.3028216
- N. V. Kosova, E. T. Devyatkina and V. V. Kaichev, 'Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition', J. Power Sources, 174, 735 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.109
- J. F. Moulder, J. Chastain, and R. C. King, "Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", 82, Physical Electronics, Inc., Chanhassen, MN (1995).
- E. Regan, T. Groutso, J. B. Metson, R. Steiner, B. Ammundsen, D. Hassell and P. Pickering, 'Surface and bulk composition of lithium manganese oxides', Surf. Interface Anal., 1068, 1064 (1999).
-
R. A. Quinlan, Y.-C. Lu, Y. Shao-Horn and A. N. Mansour, 'XPS studies of surface chemistry changes of
$LiNi_{0.5}Mn_{0.5}O_2$ electrodes during high-voltage cycling', J. Electrochem. Soc., 160, A669 (2013). https://doi.org/10.1149/2.069304jes