DOI QR코드

DOI QR Code

층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode

  • Kang, Joonsup (Department of Energy Science and Technology, Chungnam National University) ;
  • Nam, Kyung-Mo (Department of Chemical Engineering & Applied Chemistry,Chungnam National University) ;
  • Hwang, Eui-Hyeong (Leechem Co., Ltd.) ;
  • Kwon, Young-Gil (Leechem Co., Ltd.) ;
  • Song, Seung-Wan (Department of Energy Science and Technology, Chungnam National University)
  • 투고 : 2015.09.01
  • 심사 : 2016.01.12
  • 발행 : 2016.02.29

초록

층상구조 삼성분계 $LiNi_{1-x-y}Co_xMn_yO_2$ 양극활물질을 4.3 V 이상 고전압으로 충전시키면 용량 증가를 기대할 수 있으나 기존 전해액의 산화안정성이 낮아 고전압 성능 구현에 제한이 있다. 본 연구에서는 설폰계 전해액 첨가제인 dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS)을 사용하여 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 양극의 고전압 특성을 향상시키고자 한다. 본 논문은 다양한 선형 sulfone계 첨가제가 포함된 전해액에서 3.0-4.6 V 전압범위에서 양극의 충방전 특성과 양극-전해액간 계면거동과 표면층 분석에 대한 내용으로 이루어져 있다. 특히 Dimethyl sulfone (DMS) 첨가제 사용시, 50 사이클 중 $198-173mAhg^{-1}$의 방전 용량과 87%의 용량유지율을 보여 기존 전해액 대비 상당히 향상된 충방전 안정성을 보였다. 표면조성 분광분석 결과, DMS 첨가제 사용시 양극에 안정한 표면보호층이 형성되고 금속 용출이 억제되어 고전압 충방전 특성이 향상되었음 알 수 있었다.

Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

키워드

참고문헌

  1. J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
  2. Y. Nishida, K. Nakane and T. Satoh, 'Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries', J. Power Sources, 68, 561 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4
  3. S. Yamada, M. Fujiwara and M. Kanda, 'Synthesis and properties of $LiNiO_2$ as cathode material for secondary batteries', J. Power Sources, 54, 209 (1995). https://doi.org/10.1016/0378-7753(94)02068-E
  4. P. Kalyani and N. Kalaiselvi, 'Various aspects of $LiNiO_2$ chemistry: A review', Sci. Technol. Adv. Mater., 6, 689 (2005). https://doi.org/10.1016/j.stam.2005.06.001
  5. D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V $Li/Li_xMn_2O_4$ cells', J. Electrochem. Soc., 143, 2204 (1996). https://doi.org/10.1149/1.1836981
  6. A. R. Armstrong, A. J. Paterson, A. D. Robertson, and P. G. Bruce, 'Nonstoichiometric layered $Li_xMn_yO_2$ with a high capacity for lithium intercalation/deintercalation', Chem. Mater., 14, 710 (2002). https://doi.org/10.1021/cm010382n
  7. T. Liu, S.-X. Zhao, K. Wang and C.-W. Nan, 'CuO-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material with improved cycling performance at high rates', Electrochim. Acta, 85, 605 (2012). https://doi.org/10.1016/j.electacta.2012.08.101
  8. Y. Huang, F.-M. Jin, F.-J. Chen and L. Chen, 'Improved cycle stability and high-rate capability of $Li_3VO_4$-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material under different voltages', J. Power Sources, 256, 1 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.003
  9. W. Liu, M. Wang, X. L. Gao, W. Zhang, J. Chen, H. Zhou and X. Zhang, 'Improvement of the hightemperature, high-voltage cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode with $TiO_2$ coating', J. Alloys Compds., 543, 181 (2012). https://doi.org/10.1016/j.jallcom.2012.07.074
  10. Y. Bai, X. Wang, S. Yang, X. Zhang, X. Yang, H. Shu and Q. Wu, 'The effects of $FePO_4$-coating on high-voltage cycling stability and rate capability of $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$', J. Alloys Compds., 541, 125 (2012). https://doi.org/10.1016/j.jallcom.2012.06.101
  11. J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li and F. Zhou, 'Ultrathin ZnO coating for improved electrochemical performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material', J. Power Sources, 266, 433 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.027
  12. H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, 'Comparison of the structural and electrochemical properties of layered $Li[Ni_xCo_yMn_z]O2$ (x =1/4 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries', J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  13. M. Moshkovich, M. Cojocaru, H. E. Gottlieb and D. Aurbach, 'The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS', J. Electroanal. Chem., 497, 84 (2001). https://doi.org/10.1016/S0022-0728(00)00457-5
  14. H.-K. Park, 'The research and development trend of cathode materials in lithium ion battery', J. Korean Electrochem. Soc., 11, 197 (2008). https://doi.org/10.5229/JKES.2008.11.3.197
  15. A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries', Electrochem. Commun., 11, 1073 (2009). https://doi.org/10.1016/j.elecom.2009.03.020
  16. T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries', J. Electrochem. Soc., 156, A483 (2009). https://doi.org/10.1149/1.3111904
  17. Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim and S.-W. Song, 'Interfacial origin of performance improvement and fade for 4.6 V $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ battery cathodes', J. Phys. Chem. C, 118, 10631 (2014).
  18. H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M, Jung and S.-W. Song, 'Performance enhancement of 4.8 V $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ battery cathode using fluorinated linear carbonate as a high-voltage additive', J. Electrochem. Soc., 161, A2002 (2014). https://doi.org/10.1149/2.1141412jes
  19. Y. Watanabe, S. Kinoshita, S. Wada, K. Hoshino, H. Morimoto and S. Tobishima, 'Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells', J. Power Sources, 179, 770-779 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.006
  20. K. Xu and C. A. Angell, 'High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone', J. Electrochem. Soc., 145, 70 (1998). https://doi.org/10.1149/1.1838213
  21. N. Shao, X. Sun, S. Dai and D. Jiang, 'Oxidation potentials of functionalized sulfone solvents for highvoltage Li-ion batteries: A computational study', J. Phys. Chem., 116, 3235 (2012). https://doi.org/10.1021/jp211619y
  22. K. Xu and C. A. Angell, 'Sulfone-based electrolytes for lithium-ion batteries', J. Electrochem. Soc., 149, A920 (2002). https://doi.org/10.1149/1.1483866
  23. S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, 'Recent progress in research on high-voltage electrolytes for lithium-ion batteries', Chem phys chem, 15, 1956 (2014). https://doi.org/10.1002/cphc.201402175
  24. L. Xue, S.-Y. Lee, Z. Zhao and C. A. Angell, 'Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries', J. Power Sources, 295, 190 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.112
  25. R. Wagner, S. Brox, J. Kasnatscheew, D. R. Gallus, M. Amereller, I. Cekic-Laskovic and M. Winter, 'Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries', Electrochem. Commun., 40, 80 (2014). https://doi.org/10.1016/j.elecom.2014.01.004
  26. A. Manthiram and J. Kim, 'Low temperature synthesis of insertion oxides for lithium batteries', Chem. Mater., 10, 2895 (1998). https://doi.org/10.1021/cm980241u
  27. F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick and A. Garsuch, 'Study of the lithium-rich integrated compound $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (x around 0.5;M= Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells', J. Electrochem. Soc., 160, A324 (2012). https://doi.org/10.1149/2.070302jes
  28. R. Aroca, M. Nazri, G. A. Nazri, A. J. Camaro and M. Trsic, 'Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries', J. Solution Chem., 29, 1047 (2000). https://doi.org/10.1023/A:1005151220893
  29. S.-W. Song, G. V. Zhuang and P. N. Ross, 'Surface film formation on $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes using attenuated total reflection IR spectroscopy', J. Electrochem. Soc., 151, A1162 (2004). https://doi.org/10.1149/1.1763771
  30. G. V. Zhuang and P. N. Ross, 'Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy', Electrochem. Solid-State Lett., 6, A136 (2003). https://doi.org/10.1149/1.1575594
  31. G. Socrates, "Infrared Characteristic Group Frequencies, Table and Charts, Second Edition", John Wiley & Sons, New York, (1994).
  32. S.-W. Song and S.-W. Baek, 'Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries', Electrochem. Solid-State Lett., 12, A23 (2009). https://doi.org/10.1149/1.3028216
  33. N. V. Kosova, E. T. Devyatkina and V. V. Kaichev, 'Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition', J. Power Sources, 174, 735 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.109
  34. J. F. Moulder, J. Chastain, and R. C. King, "Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", 82, Physical Electronics, Inc., Chanhassen, MN (1995).
  35. E. Regan, T. Groutso, J. B. Metson, R. Steiner, B. Ammundsen, D. Hassell and P. Pickering, 'Surface and bulk composition of lithium manganese oxides', Surf. Interface Anal., 1068, 1064 (1999).
  36. R. A. Quinlan, Y.-C. Lu, Y. Shao-Horn and A. N. Mansour, 'XPS studies of surface chemistry changes of $LiNi_{0.5}Mn_{0.5}O_2$ electrodes during high-voltage cycling', J. Electrochem. Soc., 160, A669 (2013). https://doi.org/10.1149/2.069304jes