DOI QR코드

DOI QR Code

An Experimental Study on Tube-Side Heat Transfer Coefficients and Friction Factors of the Enhanced Tubes Used in Regenerators of Absorption Chillers

흡수식 냉동기의 재생기에 사용되는 전열촉진관의 관 내측 열전달계수 및 마찰계수에 대한 실험적 연구

  • Kim, Nea-Hyun (Division of Mechanical System Engineering, Incheon National University)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2016.01.14
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

Enhanced tubes are used widely in the heat exchangers of absorption chillers. In regenerators, corrugated, ribbed or floral tubes are commonly used. In this study, the tube-side heat transfer coefficients and friction factors of enhanced tubes were obtained experimentally using the Wilson Plot method. The results showed that the heat transfer coefficients and the friction factors were the largest for the corrugated tube, followed by the ribbed tube. The heat transfer coefficients and friction factors of the floral tube matched those of the smooth tube within 4%, which suggests that the heat transfer and friction characteristics of the floral tube may be accounted for properly by the hydraulic diameter. The B(e+) and g(e+) were obtained from the experimental data of the corrugated and ribbed tube. The B(e+) and g(e+) of the corrugated tube matched those of the existing correlation within 20%. The present results may be used for an assessment of the heat transfer and friction characteristics of the enhanced tubes for regenerators.

전열 촉진관은 흡수식 냉동기에 널리 사용되고 있다. 본 연구에서는 흡수식 냉동기의 재생기에 주로 사용되는 평활관, 리브 튜브, 코류게이트 튜브, 플로랄 튜브에 대하여 관 내측 열전달계수 및 마찰계수를 측정하였다. 실험 결과 열전달계수 및 마찰계수는 코류게이트 튜브에서 가장 크게 나타나고 다음으로 리브 튜브에서 크게 나타났다. 한편 플로랄 튜브의 열전달계수 및 마찰계수는 평활관 값과 4% 내에서 일치하였다. 이로부터 플로랄 튜브의 열전달 및 압력손실 특성이 수력직경으로 적절히 표현될 수 있음을 알 수 있다. 실험 데이터로부터 코류게이트 튜브와 리브 튜브의 B(e+)와 g(e+) 상관식을 구하였는데 코류게이트 튜브의 B(e+)와 g(e+)는 기존 상관식의 예측치와 20% 내에서 일치하였다. 본 연구 결과는 고온 영역에서 재생기용 전열촉진관의 관 내측 열전달 계수 및 마찰계수 산정에 활용될 수 있을 것이다.

Keywords

References

  1. Webb, R. L. and Kim, N.-H., Principles of Enhanced Heat Transfer, 2nd Ed., Taylor and Francis Pub., 2005.
  2. Yoon, J. I., Oh, H. K., and Kashiwagi, T., “Characteristics of heat and mass transfer for a falling film type absorber with insert spring tubes,” Trans. of the KSME(B), Vol. 19, No. 6, pp. 1501-1509, 1995.
  3. Kawamata, O., Otani, T., Ishitulia, N., and Aliyanchi, T., "Development of high performance heat transfer tubes for absorber of absorption refrigerator," Hitachi Corporation, Vol. 8, pp. 57-62, 1985.
  4. Furukawa, M., Sasaki, N., Kaneko, T., and Nosetani, T., "Enhanced heat transfer tubes for absorber of absorption chiller/heater," Trans. of the JAR, Vol. 10, No. 2, pp. 219-226, 1993. DOI: http://doi.org/10.11322/tjsrae.10.219
  5. Yoon, J. I., Kwon, O. K., and Moon, C. G., “Experimental investigation of heat and mass transfer on absorber with several enhanced tubes,” KSME International Journal, Vol. 13, No. 9, pp. 640-646, 1999. https://doi.org/10.1007/BF03184574
  6. An, F.-L. and Kim, N.-H., “Pool boiling performance of LiBr solution on low-fin tubes,” J. Enhanced Heat Transfer, Vol. 21, No. 4-5, pp. 307-321, 2014. DOI: http://dx.doi.org/10.1615/JEnhHeatTransf.2015013111
  7. Nikuradse, J., "Laws of flow in rough pipes," VDI Forshungsheft, NACA TM-1292, 1933.
  8. Dipprey, D. F. and Sabersky, R. H., "Heat and momentum transfer in smooth and rough tubes at Various Prandtl numbers," Int. J. Heat Mass Trans., Vol. 6, pp. 329-353, 1963. DOI: http://dx.doi.org/10.1016/0017-9310(63)90097-8
  9. Webb, R. L., Eckert, E. R. G. and Goldstein, R. J., "Heat transfer and friction in tubes with repeated rib roughness," Int. J. Heat Mass Trans., Vol. 14, 601-617, 1971. DOI: http://dx.doi.org/10.1016/0017-9310(71)90009-3
  10. Webb, R. L., Narayanamurthy, R. and Thors, P., "Heat transfer and friction characteristics of internal helical rib roughness," J. Heat Transfer, Vol. 122, pp. 134-142, 2000. DOI: http://dx.doi.org/10.1115/1.521444
  11. Mehta, M. H. and Raja Rao, M., "Analysis and correlation for turbulent flow heat transfer and friction coefficients in spirally corrugated tubes for steam condenser application," Proc. Nat'l Heat Trans. Conf., HTD-96, Vol. 3, pp. 307-312, 1988.
  12. Wilson, E. E., "A basis of rational design of heat-transfer apparatus," Trans. ASME, Vol. 37, pp. 47-70, 1915.
  13. Kline, S. J. and McClintock, F. A., "The description of uncertainties in single sample experiments," Mechanical Engineering, Vol. 75, pp. 3-9, 1953.
  14. Prandtl, L., Essentials of Fluid Dynamics, Blackie and Son Pub., London, 1969.
  15. Dittus, F. W. and Boelter, L. M. K., "Heat transfer in automobile radiators of the tubular type," Univ. Calif. Pub. Eng., Vol 2, pp. 443-461, 1930.