References
- IFT. 2005. Functional foods: opportunities and challenges. IFT Expert Report. Institute of Food Technology, Washington, DC, USA. p 7-10.
- Frewer L, Scholderer J, Lambert N. 2003. Consumer acceptance of functional foods: issues for the future. Br Food J 105: 714-731. https://doi.org/10.1108/00070700310506263
- Heasman M, Mellentin J. 2001. The Functional foods revolution: healthy people, healthy profits?. Earthscan Publications Ltd., London, UK.
- Contor L. 2001. Functional food science in Europe. Nutr Metab Cardiovasc Dis 11: 20-23.
- Hasler CM. 2002. Functional foods: benefits, concerns and challenges - a position paper from the American Council on Science and Health. J Nutr 132: 3772-3781. https://doi.org/10.1093/jn/132.12.3772
- Bigliardi B, Galati F. 2013. Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol 31: 118-129. https://doi.org/10.1016/j.tifs.2013.03.006
- Euromonitor International. 2010. Navigating wellbeing: today and tomorrow in functional food and drinks. http://www.euromonitor.com/navigating-wellbeing-today-and-tomorrow-in-functional-food-and-drinks/report (accessed Jan 2016).
- Onwulata CI. 2012. Encapsulation of new active ingredients. Annu Rev Food Sci Technol 3: 183-202. https://doi.org/10.1146/annurev-food-022811-101140
- McClements DJ, Decker EA, Park Y, Weiss J. 2009. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49: 577-606. https://doi.org/10.1080/10408390902841529
- Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, Moustaid-Moussa N. 2014. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25: 363-376. https://doi.org/10.1016/j.jnutbio.2013.10.002
- Singh H, Thompson A, Liu W, Corredig M. 2012. Liposomes as food ingredients and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Garti N, McClements DJ, eds. Woodhead Publishing Ltd. Cambridge, UK. p 287-318.
- Liu W, Ye A, Singh H. 2015. Progress in applications of liposomes in food systems. In Microencapsulation and Microspheres for Food Applications. Sagis LMC, ed. Academic Press, New York, NY, USA. p 151-170.
- Thompson AK, Couchoud A, Singh H. 2009. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci Technol 89: 99-113. https://doi.org/10.1051/dst/2008036
- Zhou W, Liu W, Zou L, Liu W, Liu C, Liang R, Chen J. 2014. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces 117: 330-337. https://doi.org/10.1016/j.colsurfb.2014.02.036
- Tan C, Xue J, Abbas S, Feng B, Zhang X, Xia S. 2014. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J Agric Food Chem 62: 6726-6735. https://doi.org/10.1021/jf405622f
- Liu W, Ye A, Liu W, Liu C, Singh H. 2013. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. J Dairy Sci 96: 2061-2070. https://doi.org/10.3168/jds.2012-6072
- Xia S, Xu S. 2005. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int 38: 289-296. https://doi.org/10.1016/j.foodres.2004.04.010
- Liu W, Liu WL, Liu CM, Liu JH, Yang SB, Zheng HJ, Lei HW, Ruan R, Li T, Tu ZC, Song XY. 2011. Medium-chain fatty acid nanoliposomes for easy energy supply. Nutrition 27: 700-706. https://doi.org/10.1016/j.nut.2010.06.010
- Tadros T, Izquierdo P, Esquena J, Solans C. 2004. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108-109: 303-318. https://doi.org/10.1016/j.cis.2003.10.023
- Gutierrez JM, Gonzalez C, Maestro A, Sole I, Pey CM, Nolla J. 2008. Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13: 245-251. https://doi.org/10.1016/j.cocis.2008.01.005
- Wooster TJ, Golding M, Sanguansri P. 2008. Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir 24: 12758-12765. https://doi.org/10.1021/la801685v
- Solans C, Esquena J, Forgiarini AM, Uson N, Morales D, Izquierdo P, Azemar N, Garcia-Celma MJ. 2003. Nano-emulsions: formation, properties and applications. In Adsorption and Aggregation of Surfactants in Solution. Mittal KL, Shah DO, eds. Marcel Dekker Inc., New York, NY, USA. p 472-498.
- Flanagan J, Singh H. 2006. Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr 46: 221-237. https://doi.org/10.1080/10408690590956710
- Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H. 2006. Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocolloids 20: 253-260. https://doi.org/10.1016/j.foodhyd.2005.02.017
- Garti N, Yaghmur A, Aserin A, Spernath A, Elfakess R, Ezrahi S. 2003. Solubilization of active molecules in microemulsions for improved environmental protection. Colloids Surf A 230: 183-190. https://doi.org/10.1016/j.colsurfa.2003.09.020
- Amar I, Aserin A, Garti N. 2003. Solubilization patterns of lutein and lutein esters in food grade nonionic microemulsions. J Agric Food Chem 51: 4775-4781. https://doi.org/10.1021/jf026222t
- Muller RH, Radtke M, Wissing SA. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54: S131-S155. https://doi.org/10.1016/S0169-409X(02)00118-7
- McClements DJ, Decker EA, Weiss J. 2007. Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72: R109-R124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
-
Jenning V, Mader K, Gohla SH. 2000. Solid lipid nanoparticles (
$SLN^{TM}$ ) based on binary mixtures of liquid and solid lipids: a$^1H$ -NMR study. Int J Pharm 205: 15-21. https://doi.org/10.1016/S0378-5173(00)00462-2 - Iscan Y, Wissing SA, Hekimoglu S, Muller RH. 2005. Solid lipid nanoparticles (SLNTM) for topical drug delivery: incorporation of the lipophilic drugs N,N-diethyl-m-toluamide and vitamin K. Pharmazie 60: 905-909.
- Pople PV, Singh KK. 2006. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech 7: E63-E69. https://doi.org/10.1208/pt070491
- Chen L, Remondetto G, Subirade M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17: 272-283. https://doi.org/10.1016/j.tifs.2005.12.011
- Augustin MA, Sanguansri L, Bode O. 2006. Maillard reaction products as encapsulants for fish oil powders. J Food Sci 71: E25-E32. https://doi.org/10.1111/j.1365-2621.2006.tb08893.x
- Bae EK, Lee SJ. 2008. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J Microencapsul 25: 549-560. https://doi.org/10.1080/02652040802075682
- Beaulieu L, Savoie L, Paquin P, Subirade M. 2002. Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: application for the protection of retinol. Biomacromolecules 3: 239-248. https://doi.org/10.1021/bm010082z
-
Ainsley Reid A, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP. 2005. Microentrapment of probiotic bacteria in a
$Ca^{2+}$ -induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul 22: 603-619. https://doi.org/10.1080/02652040500162840 - Rodrigues MMA, Simioni AR, Primo FL, Siqueira-Moura MP, Morais PC, Tedesco AC. 2009. Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer. J Magn Magn Mater 321: 1600-1603. https://doi.org/10.1016/j.jmmm.2009.02.093
- Sagis LMC, Veerman C, van der Linden E. 2004. Mesoscopic properties of semiflexible amyloid fibrils. Langmuir 20: 924-927. https://doi.org/10.1021/la035390s
- van der Linden E, Venema P. 2007. Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci 12: 158-165. https://doi.org/10.1016/j.cocis.2007.07.010
- Dobson CM. 2003. Protein folding and misfolding. Nature 426: 884-890. https://doi.org/10.1038/nature02261
-
Akkermans C, Venema P, van der Goot AJ, Gruppen H, Bakx EJ, Boom RM, van der Linden E. 2008. Peptides are building blocks of heat-induced fibrillar protein aggregates of
$\beta$ -lactoglobulin formed at pH 2. Biomacromolecules 9: 1474-1479. https://doi.org/10.1021/bm7014224 -
Loveday SM, Rao MA, Creamer LK, Singh H. 2009. Factors affecting rheological characteristics of fibril gels: the case of
$\beta$ -lactoglobulin and$\alpha$ -lactalbumin. J Food Sci 74: R47-R55. https://doi.org/10.1111/j.1750-3841.2009.01098.x - Graveland-Bikker JF, de Kruif CG. 2006. Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17: 196-203. https://doi.org/10.1016/j.tifs.2005.12.009
- Semo E, Kesselman E, Danino D, Livney YD. 2007. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloids 21: 936-942. https://doi.org/10.1016/j.foodhyd.2006.09.006
- Sahu A, Kasoju N, Bora U. 2008. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9: 2905-2912. https://doi.org/10.1021/bm800683f
- Doublier JL, Garnier C, Renard D, Sanchez C. 2000. Proteinpolysaccharide interactions. Curr Opin Colloid Interface Sci 5: 202-214. https://doi.org/10.1016/S1359-0294(00)00054-6
- Schmitt C, Sanchez C, Desobry-Banon S, Hardy J. 1998. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr 38: 689-753. https://doi.org/10.1080/10408699891274354
- Weinbreck F, de Vries R, Schrooyen P, de Kruif CG. 2003. Complex coacervation of whey proteins and gum arabic. Biomacromolecules 4: 293-303. https://doi.org/10.1021/bm025667n
-
Wang Q, Qvist KB. 2000. Investigation of the composite system of
$\beta$ -lactoglobulin and pectin in aqueous solutions. Food Res Int 33: 683-690. https://doi.org/10.1016/S0963-9969(00)00113-7 -
Girard M, Turgeon SL, Gauthier SF. 2002. Interbiopolymer complexing between
$\beta$ -lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids 16: 585-591. https://doi.org/10.1016/S0268-005X(02)00020-6 -
Girard M, Sanchez C, Laneuville SI, Turgeon SL, Gauthier SF. 2004. Associative phase separation of
$\beta$ -lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering. Colloids Surf B Biointerfaces 35: 15-22. https://doi.org/10.1016/j.colsurfb.2004.02.002 - Cooper CL, Dubin PL, Kayitmazer AB, Turksen S. 2005. Polyelectrolyte-protein complexes. Curr Opin Colloid Interface Sci 10: 52-78. https://doi.org/10.1016/j.cocis.2005.05.007
- Seyrek E, Dubin PL, Tribet C, Gamble EA. 2003. Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules 4: 273-282. https://doi.org/10.1021/bm025664a
-
Zimet P, Livney YD. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for
$\omega$ -3 polyunsaturated fatty acids. Food Hydrocolloids 23: 1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008 - Ye A, Flanagan J, Singh H. 2006. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Biopolymers 82: 121-133. https://doi.org/10.1002/bip.20465
- Anal AK, Tobiassen A, Flanagan J, Singh H. 2008. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Colloids Surf B Biointerfaces 64: 104-110. https://doi.org/10.1016/j.colsurfb.2008.01.010
Cited by
- Nanostructures: Current uses and future applications in food science vol.25, pp.2, 2017, https://doi.org/10.1016/j.jfda.2017.02.004
- Nanoemulsions as edible coatings vol.15, 2017, https://doi.org/10.1016/j.cofs.2017.06.002
- Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives vol.82, pp.6, 2017, https://doi.org/10.1111/1750-3841.13727
- wheat bran pp.09505423, 2018, https://doi.org/10.1111/ijfs.13928
- Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing vol.106, pp.6, 2018, https://doi.org/10.1002/jbm.b.34038
- Spontaneous interaction of lactoferrin with casein micelles or individual caseins vol.48, pp.2-3, 2018, https://doi.org/10.1080/03036758.2018.1439846
- Low-Energy Encapsulation of α-Tocopherol Using Fully Food Grade Oil-in-Water Microemulsions vol.3, pp.9, 2018, https://doi.org/10.1021/acsomega.8b01272
- POTENCY OF LUTEOLIN WITH SOLID LIPID NANOPARTICLE (SLN)-POLYETHYLENE GLYCOL (PEG) MODIFICATION FOR ARTEMISININ-RESISTANT PLASMODIUM FALCIPARUM INFECTION vol.7, pp.3, 2016, https://doi.org/10.20473/ijtid.v7i3.6726
- Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review vol.43, pp.4, 2019, https://doi.org/10.1111/jfpp.13917
- Modification of barley dietary fiber through thermal treatments vol.7, pp.5, 2016, https://doi.org/10.1002/fsn3.1026
- Comparative study of chemical treatments in combination with extrusion for the partial conversion of wheat and sorghum insoluble fiber into soluble vol.7, pp.6, 2019, https://doi.org/10.1002/fsn3.1041
- Specific biological responses following dextran-coated ultra-small superparamagnetic particles of iron oxides administration vol.14, pp.11, 2019, https://doi.org/10.2217/nnm-2018-0433
- Preparation and Properties Nano-encapsulated Wheat Germ Oil and its Use in the Manufacture of Functional Labneh Cheese vol.22, pp.7, 2016, https://doi.org/10.3923/pjbs.2019.318.326
- The motivations that define eating patterns in some Mediterranean countries vol.49, pp.6, 2016, https://doi.org/10.1108/nfs-12-2018-0360
- The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions vol.16, pp.23, 2019, https://doi.org/10.3390/ijerph16234848
- Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives vol.12, pp.1, 2016, https://doi.org/10.1007/s40820-020-0383-9
- Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods vol.8, pp.None, 2016, https://doi.org/10.3389/fchem.2020.564021
- Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers vol.23, pp.5, 2016, https://doi.org/10.1016/j.isci.2020.101055
- Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics vol.6, pp.2, 2016, https://doi.org/10.3390/beverages6020026
- Food values and heterogeneous consumer responses to nanotechnology vol.68, pp.3, 2020, https://doi.org/10.1111/cjag.12225
- In vitro gastrointestinal digestion and cytotoxic effect of ovalbumin-conjugated linoleic acid nanocomplexes vol.137, pp.None, 2020, https://doi.org/10.1016/j.foodres.2020.109381
- Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications vol.18, pp.12, 2016, https://doi.org/10.3390/md18120644
- Nanotechnology: Current applications and future scope in food vol.2, pp.1, 2021, https://doi.org/10.1002/fft2.58
- Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications vol.33, pp.11, 2021, https://doi.org/10.14233/ajchem.2021.23382
- Stability of bioactive compounds in liposomes after pasteurisation and storage of functional chocolate milk vol.57, pp.1, 2016, https://doi.org/10.1111/ijfs.15420