DOI QR코드

DOI QR Code

A unique thioredoxin reductase plays defensive roles against oxidative, nitrosative and nutritional stresses in Schizosaccharomyces pombe

Schizosaccharomyces pombe의 유일한 치오레독신 환원효소의 산화적, 일산화질소 및 영양 스트레스에 대한 방어적 역할

  • Ji, Dam-Jung (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Lim, Chang-Jin (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Kim, Kyunghoon (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • 지담정 (강원대학교 자연과학대학 생화학과) ;
  • 임창진 (강원대학교 자연과학대학 생화학과) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학과)
  • Received : 2016.02.03
  • Accepted : 2016.03.16
  • Published : 2016.03.31

Abstract

A unique Schizosaccharomyces pombe $TrxR^+$ gene encoding thioredoxin reductase (TrxR) was found to be positively regulated by stress-inducing agents through the stress-responsive transcription factor Pap1. In the present study, the protective roles of S. pombe TrxR were evaluated using the TrxR-overexpressing recombinant plasmid pHSM10. In the presence of hydrogen peroxide ($H_2O_2$) and superoxide anion-generating menadione (MD), S. pombe TrxR increased cellular growth and the total glutathione (GSH) level, while it reduced levels of intracellular reactive oxygen species (ROS). The nitric oxide (NO) levels of the TrxR-overexpressing cells, in the presence of $H_2O_2$ and MD, were maintained to be similar to those of the corresponding non-treated cells. Although S. pombe TrxR was able to scavenge NO generated by sodium nitroprusside (SNP), it had no significant modulating effects on cellular growth, ROS levels, or the total GSH level of SNP-exposed yeast cells, compared with the differences in those of the two non-treated cell cultures. TrxR increased the cellular growth and total GSH level, which were diminished by nitrogen starvation. It also scavenged ROS and NO produced during nitrogen starvation. Taken together, the S. pombe TrxR protects against oxidative, nitrosative, and nutritional stresses.

치오레독신 환원효소(TrxR)를 encoding하는 Schizosaccharomyces pombe의 유일한 $TrxR^+$ 유전자는 스트레스 반응 전사인자인 Pap1의 매개에 의하여 스트레스 유발 인자들에 의하여 양성적으로 조절됨이 발견되었다. 본 연구에서는, TrxR 과잉 발현 재조합 플라스미드 pHSM10을 사용하여 S. pombe TrxR의 방어적 역할들이 평가되었다. 과산화수소($H_2O_2$)와 superoxide anion을 생성하는 menadione (MD)의 존재 하에서, S. pombe TrxR은 세포성장과 총 글루타치온 (GSH) 수준을 증강시키나, 세포 내 활성산소종(ROS) 수준은 감소시켰다. $H_2O_2$와 MD에 의하여 크게 영향 받지 않는 일산화질소(NO) 수준에는 유의성 없는 효과를 보였다. S. pombe TrxR은 sodium nitroprusside(SNP)에 의하여 생성되는 NO를 소거할 수 있었으나, SNP에 노출된 세포들의 성장, ROS 수준이나 총 글루타치온 수준에는 영향을 보이지 않았다. S. pombe TrxR은 질소 결핍(nitrogen starvation)에 의하여 감소되는 세포 성장 및 총 글루타치온 수준을 증가시키며, 질소 결핍에 의하여 생성되는 ROS와 NO를 소거하였다. 요약하건대, S. pombe TrxR은 산화적, 일산화질소 및 영양 스트레스로부터 효모 세포를 보호하지만, 공통적인 기전에 의하지는 않는다.

Keywords

References

  1. Bouche, M.L., Habets, F., Biagianti-Risbourg, S., and Vernet, G. 2000. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol. Environ. Saf. 46, 246-251. https://doi.org/10.1006/eesa.2000.1919
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cai, W., Zhang, L., Song, Y., Wang, B., Zhang, B., Cui, X., Hu, G., Liu, Y., Wu, J., and Fang, J. 2012. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic. Biol. Med. 52, 257-265. https://doi.org/10.1016/j.freeradbiomed.2011.10.447
  4. Calvo, I.A., Garcia, P., Ayte, J., and Hidalgo, E. 2012. The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to $H_2O_2$. Nucleic Acids Res. 40, 4816-4824. https://doi.org/10.1093/nar/gks141
  5. Carmel-Harel, O., Stearman, R., Gasch, A.P., Botstein, D., Brown, P.O., and Stortz, G. 2001. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39, 595-605. https://doi.org/10.1046/j.1365-2958.2001.02255.x
  6. Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V., and Dawes, I.W. 2005. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215-1228. https://doi.org/10.1016/j.femsyr.2005.06.001
  7. Ejima, K., Nanri, H., Toki, N., Kashimura, M., and Ikeda, M. 1999. Localization of thioredoxin reductase and thioredoxin in normal placenta and their protective effect against oxidative stress. Placenta 20, 95-101. https://doi.org/10.1053/plac.1998.0338
  8. Fahey, R.C. 2001. Novel thiols of prokaryotes. Annu. Rev. Microbiol. 55, 333-356. https://doi.org/10.1146/annurev.micro.55.1.333
  9. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241-4257. https://doi.org/10.1091/mbc.11.12.4241
  10. Halliwell, B. and Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine, 3rd ed. Oxford Science Publications, Oxford, UK.
  11. Hiesinger, M., Roth, S., Meissner, E., and Schüller, H.J. 2001. Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements. Curr. Genet. 39, 68-76. https://doi.org/10.1007/s002940000182
  12. Holmgren, A. 1985. Thioredoxin. Annu. Rev. Biochem. 54, 237-271. https://doi.org/10.1146/annurev.bi.54.070185.001321
  13. Hong, S.M., Lim, H.W., Kim, I.H., Kim, K., Park, E.H., and Lim, C.J. 2004. Stress-dependent regulation of the gene encoding thioredoxin reductase from the fission yeast. FEMS Microbiol. Lett. 234, 379-385. https://doi.org/10.1111/j.1574-6968.2004.tb09557.x
  14. Kang, M.H., Jung, H.J., Hyun, D.H., Park, E.H., and Lim, C.J. 2011. Protective roles and Pap1-dependent regulation of the Schizosaccharomyces pombe spy1 gene under nitrosative and nutritional stresses. Mol. Biol. Rep. 38, 1129-1136. https://doi.org/10.1007/s11033-010-0210-3
  15. Kang, G.Y., Park, E.H., Kim, K., and Lim, C.J. 2009. Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67. https://doi.org/10.1007/s12275-008-0077-3
  16. Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
  17. Kim, H.J., Jung, H.Y., and Lim, C.J. 2008. The $pap1^+$ gene of fission yeast is transcriptionally regulated by nitrosative and nutritional stress. FEMS Microbiol. Lett. 280, 176-181. https://doi.org/10.1111/j.1574-6968.2007.01056.x
  18. Kohda, T.A., Tanaka, K., Konomi, M., Sato, M., Osumi, M., and Yamamoto, M. 2007. Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12, 155-170. https://doi.org/10.1111/j.1365-2443.2007.01041.x
  19. Kutty, G., Huang, S.N., and Kovacs, J.A. 2003. Characterization of thioredoxin reductase genes (trr1) from Pneumocystis carinii and Pneumocystis jiroveci. Gene 310, 175-183. https://doi.org/10.1016/S0378-1119(03)00549-3
  20. Lee, E.H., Hyun, D.H., Park, E.H., and Lim, C.J. 2010. A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol. Biol. Rep. 37, 3663-3671. https://doi.org/10.1007/s11033-010-0018-1
  21. Lopert, P., Day, B.J., and Patel, M. 2012. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7, e50683. https://doi.org/10.1371/journal.pone.0050683
  22. Machida, T., Ishibashi, A., Kirino, A., Sato, J., Kawasaki, S., Niimura, Y., Honjoh, K., and Miyamoto, T. 2012. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. PLoS One 7, e45988. https://doi.org/10.1371/journal.pone.0045988
  23. Missall, T.A. and Lodge, J.K. 2005. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 4, 487-489. https://doi.org/10.1128/EC.4.2.487-489.2005
  24. Nair, P.M. and Choi, J. 2011. Characterization and transcriptional regulation of thioredoxin reductase 1 on exposure to oxidative stress inducing environmental pollutants in Chironomus riparius. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 161, 134-139.
  25. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
  26. Nordberg, J. and Arner, E.S. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
  27. Park, M.S., Kim, H.J., Park, A.R., Ahn, K., Lim, H.W., and Lim, C.J. 2012. Pap1p-dependent upregulation of thioredoxin 3 and thioredoxin reductase genes from the fission yeast under nitrosative stress. Can. J. Microbiol. 58, 206-211. https://doi.org/10.1139/w11-125
  28. Rocha, E.R., Tzianabos, A.O., and Smith, C.J. 2007. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J. Bacteriol. 189, 8015-8023. https://doi.org/10.1128/JB.00714-07
  29. Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  30. Sajiki, K., Hatanaka, M., Nakamura, T., Takeda, K., Shimanuki, M., Yoshida, T., Hanyu, Y., Hayashi, T., Nakaseko, Y., and Yanagida, M. 2009. Genetic control of cellular quiescence in S. pombe. J. Cell. Sci. 122, 1418-1429. https://doi.org/10.1242/jcs.046466
  31. Serata, M., Iino, T., Yasuda, E., and Sako, T. 2012. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology 158, 953-962. https://doi.org/10.1099/mic.0.053942-0
  32. Serrano, L.M., Molenaar, D., Wels, M., Teusink, B., Bron, P.A., de Vos, W.M., and Smid, E.J. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 6, 29. https://doi.org/10.1186/1475-2859-6-29
  33. Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  34. Song, S.H., Kim, B.M., Lim, C.J., Song, Y.S., and Park, E.H. 2009. Expression of the $atf1^+$ gene is upregulated in fission yeast under nitrosative and nutritional stresses. Can. J. Microbiol. 55, 1323-1327. https://doi.org/10.1139/W09-087
  35. Uziel, O., Borovok, I., Schreiber, R., Cohen, G., and Aharonowitz, Y. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186, 326-334. https://doi.org/10.1128/JB.186.2.326-334.2004
  36. Vivancos, A.P., Jara, M., Zuin, A., Sanso, M., and Hidalgo, E. 2006. Oxidative stress in Schizosaccharomyces pombe: different $H_2O_2$ levels, different response pathways. Mol. Genet. Genomics 276, 495-502. https://doi.org/10.1007/s00438-006-0175-z
  37. Yoshitake, S., Nanri, H., Fernando, M.R., and Minakami, S. 1994. Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidative damaged proteins. Biochem. J. 116, 42-46. https://doi.org/10.1093/oxfordjournals.jbchem.a124500
  38. Zhao, F., Yan, J., Deng, S., Lan, L., He, F., Kuang, B., and Zeng, H. 2005. A thioredoxin reductase inhibitor induces growth inhibition and apoptosis in five cultured human carcinoma cell lines. Cancer Lett. 236, 46-53.