DOI QR코드

DOI QR Code

A Microfluidic Electrochemical Sensor for Detecting the Very Low Concentration Endocrine Disruptor with Self Assembled Monolayer and Preconcentration Technique

자기조립단층과 농축 기술을 이용한 저농도 내분비계 장애물질 검출용 미소유체채널 기반 전기화학 센서

  • Kim, Suyun (Dept. of Micro/nanosystem Engineering, Korea University) ;
  • Han, Ji-Hoon (Dept. of Electrical and Electronic Engineering, Korea University) ;
  • Pak, James Jungho (Dept. of Electrical and Electronic Engineering, Korea University)
  • Received : 2016.01.08
  • Accepted : 2016.03.20
  • Published : 2016.04.01

Abstract

This paper demonstrates a microfluidic electrochemical sensor for detecting endocrine disruptor such as estradiol at a very low concentration by using preconcentration technique. In addition, self-assembled monolayer(SAM) was also employed on the working electrode of the electrochemical sensor in order to increase the estradiol capture efficiency of the sensor. SAM treatment on the working electrode enhanced the specific binding between the surface of the working electrode and the estradiol antibody. The estradiol antibody was applied on the working electrode at different concentrations(10, 20, 50, 100, 200 pg/ml) for observing the concentration dependency. The measured electrochemical redox current changed with the amount of the bound estradiol on the Au working electrode surface and the sensor can detect all the target material when the immobilized antibody amount is more than the estradiol amount in the water. The elecrochemical estradiol sensor without SAM treatment showed a low current of 7.79 nA, while the sensor treated with SAM resulted in 339 nA at 200 pg/ml, which is more than 40 fold higher output current. When combining the preconcentration technique and the SAM-treated electrode, the measured current became more than 100 fold higher than that of the sensor without neither SAM treatment nor preconcentration technique. The combination of these two techniques can would enable the proposed microfluidic electrochemical sensor to detect a very low concentration endocrine disruptor.

Keywords

References

  1. K.T. Liao, M. Tsegaye, V. Chaurey, C.F. Chou, N.S. Swami, "Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces, Electrophoresis", ELECTROPHORESIS, vol. 33, pp. 1958-1966, 2012. https://doi.org/10.1002/elps.201100707
  2. J.H. Lee, J. Han, "Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator, Microfluid Nanofluidics", Microfluidics and Nanofluidics, vol. 9, pp. 973-979, 2010. https://doi.org/10.1007/s10404-010-0598-z
  3. T. Tanaka, H. Takeda, F. Ueki, K. Obeta, H. Tajima, H. Takeyama, Y. Goda, S. Fujimoto, T. Matsunaga, "Rapid and sensitive detection of $17{\beta}$-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles", Journal of Biotechnology, vol. 108, pp. 153-159, 2004. https://doi.org/10.1016/j.jbiotec.2003.11.010
  4. A. Penalver, E. Pocurull, F. Borrull, R.M. Marce, "Method based on solid-phase microextraction- high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples", Journal of Chromatography A, vol. 964, pp. 153-160, 2002. https://doi.org/10.1016/S0021-9673(02)00694-5
  5. K. Edman, L. Svensson, B. Eriksson, P. O. Gunnarsson, "Determination of estramustine phosphate and its metabolites estromustine, estramustine, estrone and estradiol in human plasma by liquid chromatohraphy with fluorescence detection and gas chromatography and with nitrogen-phosphorus and mass spectrometric detection", Journal of Chromatography B, vol. 738, pp. 267-279. 2000. https://doi.org/10.1016/S0378-4347(99)00526-5
  6. J. Henion, E. Brewer, G. Rule, "Peer Reviewed: Sample Preparation for LC/MS/MS: Aanalyzing Biological and Environmental Samples", Anal Cemi, vol. 70, pp. 650-656, 1998.
  7. A. Rachkov, S. McNiven, A. El'skaya, K. Yano, I. Karube, "Florescence detection of $\beta$-estradiol using a molecularly imprinted polymer", Analytica Chimica Acta, vol. 405, pp. 23-29, 2000. https://doi.org/10.1016/S0003-2670(99)00743-6
  8. A. J. S. Ahammad, J. J. Lee, M. A. Rahman, "Electrochemical sensors based on carbon nanotubes", sensors, vol. 9, pp. 2289-2319. 2009. https://doi.org/10.3390/s90402289
  9. I. N. Mefford, "Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurement of catecholamines, serotonin and metabolites in rat brain", Journal of Neuroscience Methods, vol. 3, pp. 207-224, 1981. https://doi.org/10.1016/0165-0270(81)90056-X
  10. J. H. Kim, I. J. Yi, C. J. Kang, Y. S. Kim, "Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode", The Korean Institute of Electrical Engineers, vol. 5, pp. 227-231, 2005.
  11. S. H. Ko, Y. A. Song, S. J. Kim, M. Kim, J. Han, K. H. Kang, "Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization", Lab chip, vol. 12, pp. 4472-4482, 2012. https://doi.org/10.1039/c2lc21238b
  12. V. Liu, Y. A. Song, J. Han, "Capiilary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip", Lab chip, vol. 10, pp. 1485-1490, 2010. https://doi.org/10.1039/b923214a
  13. J. H. Lee, Y. A. Song, S. R. Tannenbaum, J. Han, "Increase of Reaction rate and Sensitivity of Low- Abundance Enzyme Assay Using Micro/Nanofluidic Preconcentration Chip", Analytical Chemistry, vol. 80, pp. 3198-3204, 2008. https://doi.org/10.1021/ac800362e
  14. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chemical Reviews, vol. 105, pp. 1103-1169, 2005. https://doi.org/10.1021/cr0300789
  15. D. Hlushkou, R. Dhopeshwarkar, R. M. Crooks, U. Tallarek, "The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units", Lab Chip, vol. 8, pp. 1153-1162, 2008. https://doi.org/10.1039/b800549d
  16. J. A. Manzanares, W. D. Murphy, S. Mafe, H. Reiss, "Numerical Simulation of the Nonequilibrium Diffuse Double Layer in Ion-Exchange Membranes", The Journal of Physical Chemistry, vol. 97, pp. 8524-8530, 1993. https://doi.org/10.1021/j100134a023
  17. S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, J. Han, "Concentration Polarization and Nonlinear Electrokinetic Flow near Nanofluidic Channel", Physical review letters, vol. 99, pp. 044501, 2007. https://doi.org/10.1103/PhysRevLett.99.044501
  18. H. Kuramitz, M. Matsuda, J. H. Thomas, K. Sugawara, S. Tanaka, "Electrochemical immunoassay at a $17{\beta}$- estradiol self-assembled monolayer electrode using a redox marker", Analyst, vol. 128, pp. 182-186, 2003. https://doi.org/10.1039/b209590b
  19. J.E. Im, J.A. Han, B.K. Kim, J.H. Han, T.S. Park, S. Hwang, S.I. Cho, W.Y. Lee, Y.R. Kim, "Electrochemical detection of estrogen hormone by immobilized estrogen receptor on Au electrode", Surface and Coatings Technology, vol. 205, pp. S275-S278, 2010. https://doi.org/10.1016/j.surfcoat.2010.08.006
  20. D.Y. Lee, W.S. Choi, S.H. Park, Y.S. Kwon, "Electrochemical Detection of Self-Assembled Viologen Modified Electrode as Mediator of Glucose Sensor", Jornal of Electrical Engineering & Technology, vol. 4, pp. 106-110, 2009. https://doi.org/10.5370/JEET.2009.4.1.106
  21. N. S. Lee, J. S. Chang, Y. S. Kwon, "Determination of the NDR and Electron Transport Properties of Self-Assembled Nitro-Benzene Monolayers Using UHV-STM", Jornal of Electrical Engineering & Technology, vol. 1, pp. 366-270, 2006. https://doi.org/10.5370/JEET.2006.1.3.366
  22. M. M. Ngundi, O. A. Sadik, T. Yamaguchi, S. I. Suye, "First comparative reaction mechanisms of $\beta$-estradiol and selected environmental hormones in a redeox environment", Electrochemistry communications, vol. 5, pp. 61-67, 2003. https://doi.org/10.1016/S1388-2481(02)00538-6