Abstract
Relational Database Management Systems have become de facto database model among most developers and users since the inception of Data Science. From IoT devices, sensors, social media and other sources, data is generated in structured, semi-structured and unstructured formats, in huge volumes, thereby the difficulty of data management greatly increases. Organizations that collect large amounts of data are increasingly turning to non relational databases - NoSQL databases. In this paper, through experiments with real field data, we demonstrate that MongoDB, a document-based NoSQL database, is a better alternative for building a Telco Subscriber Data Management System which hitherto is mainly built with Relational Database Management Systems. We compare the existing system in various phases of data flow with our proposed system powered by MongoDB. We show how various workloads at some phases of the existing system were either completely removed or significantly simplified on the new system. Based on experiment results, using MongoDB for managing telco subscriber data turned out to offer performance better than the existing system built with MSSQL Server.