DOI QR코드

DOI QR Code

Effect of Zirconium Dioxide in BaO-ZnO-B2O3-SiO2 system on Optical Properties of Color Conversion Glasses

  • Jeong, HyeonJin (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Dae-Woo (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young Jin (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, MiJai (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Jonghee (Optic & Display Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jungsoo (R & D Center, Bass Co., Limited) ;
  • Yang, Yunsung (R & D Center, Bass Co., Limited) ;
  • Youk, Sookyung (R & D Center, Bass Co., Limited) ;
  • Park, Tae-Ho (R & D Center, Bass Co., Limited) ;
  • Shin, Dongwook (Department of Materials science & Engineering, Hanyang University)
  • Received : 2016.02.04
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

The effect of zirconium dioxide ($ZrO_2$) on the properties of color conversion glasses was examined in the $BaO-ZnO-B_2O_3-SiO_2$ system. The difference in refractive index between glass and phosphor affect the optical properties of the color conversion glass because of light scattering. Reducing the difference in refractive index is a method to improve the luminous efficacy of color conversion glasses. As a reference, a type of glass that contains 25 mol% of each component was used. To increase the refractive index of the glass samples, the BaO content was increased from 25 to 40 mol%, and $ZrO_2$ was added at levels of 1, 3, and 5 mol%. Color conversion glasses were prepared by sintering a mixture of glass and 5 wt% $YAG:Ce^{3+}$ phosphor. As a result, the refractive index of the glass was found to be dependent on the BaO and $ZrO_2$ contents in the BaO-ZnO-$B_2O_3-SiO_2$ system. As the BaO and $ZrO_2$ contents were increased, the luminous efficacy of the color conversion glass was improved because the refractive index difference between the glass and the $YAG:Ce^{3+}$ phosphor decreased.

Keywords

References

  1. S. Fujita, Y. Umayahara, and S. Tanabe, "Influence of Light Scattering on Luminous Efficacy in Ce:YAG Glass-Ceramic Phosphor," J. Ceram. Soc. Jpn., 118 [2] 128-31 (2010). https://doi.org/10.2109/jcersj2.118.128
  2. J. K. Kim and E. F. Schubert, "Transcending the Replacement Paradigm of Solid-State Lighting," Opt. Express, 16 [26] 21835-42 (2008). https://doi.org/10.1364/OE.16.021835
  3. S. R. Lim, D. Kang, O. A. Ogunseitan, and J. M. Schoenung, "Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs," Environ. Sci. Technol., 47 [2], 1040-47 (2013). https://doi.org/10.1021/es302886m
  4. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, "White-Light Emission From Near UV InGaN-GaN LED Chip Precoated With Blue/Green/Red Phosphors," IEEE Photon. Technol. Lett., 15 [1] 18-20 (2003). https://doi.org/10.1109/LPT.2002.805852
  5. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, "Red, Green, and Blue LEDs for White Light Illumination," IEEE J. Sel. Top. Quant. Electron., 8 [2] 333-38 (2002). https://doi.org/10.1109/2944.999188
  6. T. Obayashi, R. Suzuki, H. Mochizuki, and Y. Aiki, "Development of Thermoplastic Nanocomposite Optical Materials," Fujifilm Res. Dev., 58 50-4 (2013).
  7. N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Q. Qi, "Transparent Ce:$Y_3Al_5O_{12}$ Ceramic Phosphors for White Light-Emitting Diodes," Appl. Phys. Lett., 101 [6] 061902 (2012). https://doi.org/10.1063/1.4742896
  8. J .Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, "High Thermal Stability of Phosphor-Converted With Light-Emitting Diodes Employing Ce:YAG-Doped Glass," IEEE J. Sel. Top. Quant. Electron., 17 [3] 741-46 (2011). https://doi.org/10.1109/JSTQE.2010.2096459
  9. S. Fujita, S. Yoshihara, A. Saksmoto, S. Yamamoto, and S. Tanabe, "YAG Glass-Ceramic Phosphor for with LED (I): Background and Development"; pp. 594111-1-7 in SPIE Proceedings, Fifth International Conference on Solid State Lighting, 2005.
  10. X. Liu, G. Qu, A. X. Lu, and Z. Luo, "Optical Properties and Structure of Borate Barium Zinc Glasses," Mater. Focus, 2 [1] 68-74 (2013). https://doi.org/10.1166/mat.2013.1053
  11. G. N. Devda, G. Upender, V. C. Mouli, and L. S. Ravangave, "Structure, Thermal and Spectroscopic Properties of $Cu^{2+}$ Ions Doped $59B_2O_3$-$10K_2O$-(30-x)ZnO-xBaO (0 ${\leq}$ x ${\leq}$30) Glass System," J. Non-Cryst. Solids, 432 319-24 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.10.022
  12. M. Ismail, S. N. Supardan, A. K. Yahya, and Roslan. A-S, "Optical Properties and Weakening of Elastic Moduli with Increasing Glass Transition Temperature ($T_g$) in (80-x)$TeO_2$-xBaO-20ZnO Glasses," Int. J. Mater. Res., 106 [8] 893-901 (2015). https://doi.org/10.3139/146.111250
  13. C.S. Terny, E. C. Cardillo, P. E. diPratula, M. A. Villar, and M. A. Frechero, "Electrical Response of Bivalent Modifier Cations into a Vanadium-Tellurite Glassy Matrix," J. Non-Cryst. Solids, 387 107-11 (2014). https://doi.org/10.1016/j.jnoncrysol.2013.12.036
  14. M. Hasanuzzaman, M. Sajjia, A. Rafferty, and A. G. Olabi, "Thermal Behavior of Zircon/Zirconia-Added Chemically Durable Borosilicate Porous Glass," Thermochim. Acta, 555 [10] 81-8 (2013). https://doi.org/10.1016/j.tca.2012.12.018
  15. A. P. N. Oliveira, A. B. Corradi, L. Barbieri, C. Leonelli, and T. Manfredini, "The Effect of the Addition of $ZrSiO_4$ on the Crystallization of $30Li_2O$/$70SiO_2$ Powdered Glass," Thermochim. Acta, 286 [2] 375-86 (1996). https://doi.org/10.1016/0040-6031(96)02968-1
  16. C. F. Lai, C. C. Chang, M. J. Wang, and M. K. Wu, "CCTand CRI-Tuning of White Light-Emitting Diodes Using Three-Dimensional Non-Close-Packed Colloidal Photonic Crystals with Photonic Stopbands," Opt. Express, 21 [S4] A687-94 (2013). https://doi.org/10.1364/OE.21.00A687
  17. K. A. Denault, N. C. George, S. R. Paden, S. Brinkley, A. A. Mikhailovsky, J. C. Neuefeind, S. P. DenBaars, and Seshadri R., "A Green-Yellow Emitting Oxyfluoride Solid Solution Phosphor $Sr_2Ba(AlO_4F)_{1-x}$$(SiO_5)_x$:$Ce^{3+}$ for Thermally Stable, High Color Rendition Solid State White Lighting," J. Mater. Chem., 22 18204-13 (2012). https://doi.org/10.1039/c2jm33620k
  18. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, "Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip," Jpn. J. Appl. Phys., 41 L371-73 (2002). https://doi.org/10.1143/JJAP.41.L371
  19. J. Seo, S. Kim, Y. Kim, F. lqbal, and H. Kim, "Effect of Glass Refractive Index on Light Extraction Efficiency of Light-Emitting Diodes," J. Am. Ceram. Soc., 97 [9] 2789-93 (2014). https://doi.org/10.1111/jace.13040
  20. H. J. Jeong, C. Huh, T. Y. Lim, J. H. Kim, M. J. Lee, D. W. Jeon, J. Hwang, T. H. Park, and D. Shin, "Effect of Glass Composition on the Luminescence Characteristics of Color Conversion Glasses in BaO-ZnO-$B_2O_3$-$SiO_2$ Glasses," J. Non-Cryst. Solids, 423-424 25-9 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.012

Cited by

  1. Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2016, https://doi.org/10.1007/s43207-021-00152-2