DOI QR코드

DOI QR Code

RCP 8.5 기후변화 시나리오를 적용한 논 서식 애물땡땡이 (Sternolophus rufipes)와 잔물땡땡이(Hydrochara affinis)의 비행시기 예측

Prediction of the Flight Times of Hydrochara affinis and Sternolophus rufipes in Paddy Fields Based on RCP 8.5 Scenario

  • 최순군 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 김명현 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 최락중 (국립종자원 동부지원) ;
  • 어진우 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 방혜선 (농촌진흥청 국립농업과학원 기후변화생태과)
  • Choi, Soon-Kun (Climate Change & Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Myung-Hyun (Climate Change & Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Choe, Lak-Jung (Seed & Variety Service, Ministry of Agriculture, Food and Rural Affairs) ;
  • Eo, Jinu (Climate Change & Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Bang, Hea-Son (Climate Change & Agroecology Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2015.09.04
  • 심사 : 2016.03.21
  • 발행 : 2016.03.30

초록

우리나라 농경지 중 논은 약55%로 가장 많은 면적을 차지하고 있으며, 논에 서식하는 생물 중 논 환경변화에 민감하고 일정한 방향의 반응을 보이는 생물종은 생물지표로 활용할 수 있다. 생물계절 및 서식범위 등 생물지표를 이용한 분석은 기후변화의 영향을 직관적이고 정량적으로 판단할 수 있는 수단으로 평가된다. 따라서 논에 서식하는 수서생물의 온도변화에 따른 생물반응 연구는 논 생태계의 생물다양성 보전을 위한 계획 수립과 기후변화 감시를 위한 기초자료로서 활용된다. 본 연구에서는 생물계절을 관측하기 위하여 일 단위 관측이 가능한 무인관측시스템을 구축하였다. 무인관측시스템은 유인부, 촬영부, 전원공급부로 구성되며 위도를 고려하여 해남, 부안, 당진, 철원에 설치하였다. 관측자료를 분석한 결과 철원을 제외한 세 지역에서 잔물땡땡이(Hydrochara affinis)와 애물땡땡이(Sternolophus rufipes)의 개체 수를 계측할 수 있었다. 계측 값을 바탕으로 비행시기의 유효적산온도를 판별하였으며 KMA 기후변화 시나리오를 이용하여 2020년대, 2050년대, 2080년대 평년의 비행시기의 변화를 예측하여 비교하였다. 그 결과 2020년대에 비하여 2080년대는 비행시작시기가 15일 이상 앞당겨졌으며 최대 비행시기가 22일, 최종 비행시기가 27일 이상 빨라지는 것으로 나타났다. 서식 위치에 따라서는 내륙보다 해안, 도심보다 도외지, 평야보다 곡간지 논의 비행시기 변화가 뚜렷하였다. 따라서 본 연구의 결과를 바탕으로 잔물땡땡이와 애물땡땡이를 기후변화 지표종으로 활용할 수 있을 것으로 판단된다.

The total area of paddy field was estimated to be 55 % of the cultivated lands in South Korea, which is approximately 1 million hectares. Organisms inhabiting paddy fields if they are sensitive to environmental changes can be environmental indicator of paddy fields. Biological indicators such as phenology and distributional range are evaluated as intuitive and quantitative method to analyze the impact of climate change. This study aims to estimate flight time change of Hydrophilidae species' based on the RCP 8.5 climate change scenario. Unmanned monitoring systems were installed in Haenam, Buan, Dangjin and Cheorwon relative to the latitudinal gradient. In the three regions excepting Cheorwon, it was able to measure the abundance of flying Hydrochara affinis and Sternolophus rufipes. Degree-day for the flight time was determined based either on field measurement values and estimates of 2020s, 2050s and 2080s from KMA climate change scenario data. As a result, it is found that date of both species of initial flight becomes 15 days earlier, that of peak flight becomes 22 days earlier and that of final flight does 27 days earlier in 2080s compared to 2020s. The climate change impact on flight time is greater in coastal area, rural area and valley than inland area, urban area and plan. H. affinis and S. rufipes can be used as climate change indicator species.

키워드

참고문헌

  1. Angus, R. B., 1983: Evolutionary stability since the Pleistocene illustrated by reproductive compatibility between Swedish and Spanish Helophorus lapponicus Thomson (Coleoptera, Hydrophilidae). Biological journal of the Linnean Society 19(1), 17-25. https://doi.org/10.1111/j.1095-8312.1983.tb00773.x
  2. Baek, H. M., D. G. Kim, M. J. Baek, C. Y. Lee, H. J. Kang, M. C. Kim, J. S. Yoo, and Y. J. Bae, 2014: Predation efficiency and preference of the Hydrophilid Water Beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean Journal of Environmental Biology 32(2), 112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
  3. Elias, S. A., 1991: Insects and climate change. Bioscience, 552-559.
  4. Han, M. S., H. S. Bang, M. H. Kim, K. K. Kang, M. P. Jung, and D. B. Lee, 2010: Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean Society of Agriculture and Environment 29(4), 427-433. https://doi.org/10.5338/KJEA.2010.29.4.427
  5. Han, M. S., Y. E. Na, H. S. Bang, M. H. Kim, K. K. Kang, H. K. Hong, J. T. Lee, and B. G. Ko, 2008: Aquatic invertebrates in paddy ecosystem of Korea. National Academy of Agricultural Science, Suwon, Korea.
  6. Kim, J. G., Y. C. Choi, J. Y. Choi, H. S. Sim, H. C. Park, W. T. Kim, B. D. Park, J. E. Lee, K. K. Kang, and D. B. Lee, 2007: Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean Journal of Applied Entomology 46(3), 355-341.
  7. Kim, M. K., M. S. Han, D. H. Jang, S. G. Baek, W. S. Lee, Y. H. Kim, and S. Kim, 2012: Production technique of observation grid data of 1km resolution. Journal of Climate 7(1), 55-68.
  8. Kim, M. K., D. H. Lee, and J. U. Kim, 2013: Production and validation of daily grid data with 1km resolution in South Korea. Journal of Climate 8(1), 13-25.
  9. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kubler, P. Bissolli, O. Braslavska, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatcza, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A. J. H. van Vliet, F. E. Wielgolaski, S. Zach, and A. Zust, 2006: European phenological response to climate change matches the warming pattern. Global Change Biology 12(10), 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  10. Korea Meteorological Administration, 2012: The Climate Atlas of Korea. Korea Meteorological Administration, Seoul, Korea.
  11. Ministry of Agriculture, Food and Rural Affairs Republic of Korea, 2015: Agriculture, Food and Rural Affairs Major Statistics. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  12. Nagler, P. L., S. Pearlstein, E. P. Glenn, T. Brown, H. L. Bateman, D. W. Bean, and K. R. Hultine, 2014: Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations. Remote Sensing of Environment 140, 206-219. https://doi.org/10.1016/j.rse.2013.08.017
  13. Nam, Y. W., S. H. Koh, D. S. Won, J. K. Kim, and W. I. Choi, 2013: An empirical predictive model for the flight time of Platypus koryoensis (Coleoptera: Platypodinae). Applied Entomology and Zoology 48, 515-524. https://doi.org/10.1007/s13355-013-0213-3
  14. Parmesan, C., 1996: Climate and species' range. Nature 382, 765-766. https://doi.org/10.1038/382765a0
  15. Parmesan, C., and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42. https://doi.org/10.1038/nature01286
  16. Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, 1999: Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583. https://doi.org/10.1038/21181
  17. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds, 2003: Fingerprints of global warming on wild animals and plants. Nature 421, 57-60. https://doi.org/10.1038/nature01333
  18. Saino, N., R. Ambrosini, D. Rubolini, J. von Hardenberg, A. Provenzale, K. Hupop, O. Hupop, A. Lehikoinen, E. Lehikoinen, K. Rainio, M. Romano, and L. Sokolov, 2011: Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proceedings of the Royal Society of London B: Biological Sciences 278, 835-842.
  19. Sparks, T. H., and A. Menzel, 2002: Observed changes in the seasons: an overview. International Journal on Climatology 22, 1715-1725. https://doi.org/10.1002/joc.821
  20. Stenseth, N. C., and A. Mysterud, 2002: Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences 99(21), 13379-13381.
  21. Wagner, T. L., H. Wu, P. J. H. Sharpe, and R. N. Coulson, 1984: Modeling distribution of insect development time: a literature review an application of Weibull function. Annals of the Entomological Society of America 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  22. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, H. G. Ove, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 416, 389-395. https://doi.org/10.1038/416389a