DOI QR코드

DOI QR Code

Bearing Capacity Study for Small-Scale Testing of Rotary Pile with Helix Plate

축소모형 로타리 파일의 나선날개에 따른 지지성능에 관한 연구

  • Shin, Eun-Chul (Dept. of Civil and Environmental Engineering, College of Urban Science, Incheon National Univ.) ;
  • Kim, Kyeong-Sig (Dept. of Civil and Environmental Engineering, College of Urban Science, Incheon National Univ.) ;
  • Moon, Hyeong-Rok (Bansuk Foundation E&C Co., Ltd.)
  • Received : 2015.11.25
  • Accepted : 2016.03.23
  • Published : 2016.03.30

Abstract

Rotary pile consists a single or multiple helix plate and it is installed into the ground using the rotation of the helix plate. Rotary pile in soft ground is able to be supported by pile shaft and helix plate. When the pile is installed into hard layer relatively, the end bearing capacity is possible to be increased by the lower helix plate. In this paper, small-size rotary piles were manufactured with using steel pipe which is reduced to 1/5 size of the rotary pile on the construction field. Pile load test was carried out on the foundation soil which was formed by weathered soft soil. The bearing capacity of small-scale piles depends on the number of helix plate, the length of plate diameter, and an interval of plates, respectively. The bearing capacity of pile increases about 40% with 3 helix plate and it is also confirmed that the bearing capacity is improved about 10% as the increment of plate interval.

로타리 파일은 단일 또는 다수의 나선날개와 파일강관으로 구성되어 있으며, 나선 회전운동으로 관입이 이루어진다. 연약한 지반에 관입된 파일은 나선날개 원판과 나선날개가 부착된 파일강관에 의해 지지력을 발휘할 수 있다. 또한 비교적 단단한 층에 도달할 경우 파일강관 하부의 나선날개에 의해 선단지지력이 증가하게 된다. 이 연구에서는 현장에서 사용되는 로타리 파일의 나선날개를 기준으로 1/5로 축소한 로타리 파일을 화강풍화토 지반에 설치한 후 파일재하시험을 하였다. 설치된 파일은 나선날개의 개수, 크기, 간격에 따라 지지력에 영향을 미치는 것으로 나타났다. 날개의 개수가 2개에서 3개로 증가할 때 지지력이 40% 정도 증가하였으며, 날개의 간격이 증가함에 따라 지지력이 10% 정도 더 크게 나타나는 것으로 확인되었다.

Keywords

References

  1. ASTM D 1143-81 (1994), Standard Test Methods for Piles Under Static Axial Compressive Load, American Society for Testing and Materials, West Conshohochen, PA.
  2. Brinch-Hansen, J. (1963), "Discussion on Hyperbolic Stress-Strain Response Cohesive Soils", Journal for Soil Mechanics and Foundation Engineering, ASCE, Vol.89, SM4, pp.241-242.
  3. Cho, C. H., Heo, Y. and Bae, W. S. (2013), "Behavior Characteristics of helical pile in granite residual soil", Journal of The Korean Geo-Environmental Society, pp.41-50.
  4. Ha, T. S., Moon, H. R. and Moon, H. M. (2013), "An analysis of correlation between predicted and measured bearing capacity in Rotary(Helical) pile method", Proceedings of Korean Geotechnical Society.
  5. Hendrickson, R. (1984), The Ocean Almanac, Doubleday, New York.
  6. Lee, J., Lee, D., Kim, H. and Choi, H. (2014), "Effective of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : Bearing Capacity Prediction", Journal of Korean Geosynthetics Society, Vol.13, No.2, pp.41-47.
  7. Lee, J., Lee, D., Kim, H. and Choi, H. (2014), "Effective of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : Test-bed Construction and Field Loading Test", Journal of Korean Geosynthetics Society, Vol.13, No.2, pp.31-39.
  8. Lee, M. J., Kim, K. M., Rhim, H. C. and Seo, G. B. (2010), "Experimental Research on the Bearing Capacity of Helical Steel Pile with Sand and Weathering Soil", Proceedings of Architecture Institute of Korea Conference, Vol.30, No.1, pp.209-210.
  9. Lutenegger, A. J., (2003), "Helical Screw Piles and Screw Anchors-An Historical Prospective and Introduction", Proceeding of Helical Foundations and Tie-Backs Seminar, Deep Foundation Institute, Cincinnati, Ohio.
  10. Meyerhof, G. G. (1951), "The Ultimate Bearing Capacity of Foundations" Geotechnique, Vol.2, No.4, pp.301-331. https://doi.org/10.1680/geot.1951.2.4.301
  11. Mooney, J. S., Adamczak, S. Jr. and Clemence, S. P. (1985) "Uplift Capacity of Helical Anchors in Clay and Silt." Uplift Behavior of Anchor Foundations in Soil, ASCE, pp.48-72.
  12. Park, J. B., Lee, B. S., Park, Y. B., Lee, S. U., Lyu, H. W., and Lee, J. S. (2014), Improvement Plan for Design Capacity of LH PHC Pile, Korea Land & Housing Corp. Report 2014-47.
  13. Perko, H. A. (2009), Helical Piles, John Wiley & Sons, New Jersey.
  14. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, New York.

Cited by

  1. SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발 vol.34, pp.6, 2016, https://doi.org/10.7843/kgs.2018.34.6.37