DOI QR코드

DOI QR Code

토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics

  • Choi, Choong-Lak (Geotechnical Engineering Depatment, Pyunghwa Engineering Consultants) ;
  • Lee, Kwang-Wu (Geotechnical Engineering Research Institute, Korea Institute of Civil engineering and building Technology) ;
  • Kim, Eun-Ho (Geotechnical Engineering Depatment, Pyunghwa Engineering Consultants) ;
  • Jung, Ji-Won (Geotechnical Engineering Depatment, Pyunghwa Engineering Consultants)
  • 투고 : 2016.01.20
  • 심사 : 2016.03.18
  • 발행 : 2016.03.30

초록

최근 철도는 고속화를 위해 콘크리트궤도를 적용하는 추세이고 연약지반 구간에 건설된 철도는 장기간에 걸친 작은 양의 침하발생으로도 침하에 민감한 콘크리트 궤도의 침하량 허용범위를 초과하여 궤도의 손상과 뒤틀림을 초래할 수 있다. 연약지반에 건설된 철도의 잔류침하를 효과적으로 제어 할 수 있는 방법으로 성토지지말뚝공법을 들 수 있으며 성토하중을 말뚝머리로 전달하기 위해 콘크리트 슬라브가 사용되기도 하나 하중이 전달되는 과정에 나타나는 성토체 내부의 아칭효과를 극대화하는 토목섬유를 이용한 방법이 보다 경제적이다. 그러나 토목섬유 등으로 인해 집중된 성토하중을 받는 성토지지용 말뚝은 일반적으로 교량구조물에 사용하는 PHC말뚝을 그대로 사용하고 있으며 이는 필요이상으로 높은 강도의 재료를 사용함으로써 재료의 효율성이 크게 떨어지고 있는 실정이다. 이에 따라 해외의 적용사례 조사를 통해 성토지지용으로 가장 적합한 말뚝의 형식으로 현장타설 콘크리트 말뚝을 선정하고 산업부산물을 이용한 배합설계와 압축강도시험을 통해 성토지지용 말뚝재료의 최적 배합조건을 도출하였다. 그리고 최적배합조건을 적용한 성토지지용 현장타설말뚝이 기존 PHC말뚝에 비해 재료의 효율성이 약 2.8배 뛰어나다는 것을 수치해석을 통해 확인하였다.

It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

키워드

참고문헌

  1. Alexiew, D. and Gartung, E. (1999), "Geogrid reinforced railway embankment on piles-performance monitoring 1994-1998." Proc. of Geossinteeticos'99, Rio de Janeiro, Brazil, 403-411.
  2. Canadian Geotechnical Society (2006), Canadian Foundation Engineering Manual 4th Edition, BiTech Publishers Ltd..
  3. David (2005), "The Overriding Aspects of the Design of Geosynthetic-Reinforced Pile Supported Embankments." American Society of Civil Engineers.
  4. Kim, H.-S. and Jin, C.-S. (2000), "Fundamental Properties of Concrets Using Casting Foundry Fly Ash as an Admixture", Journal of Korea Concrete Institute, Vol.12, No.3, pp.87-94. https://doi.org/10.22636/JKCI.2000.12.3.87
  5. Kim, J.-J. (2014), "Field application cases of carbon reduction purposed concrete using industrial by-product", Technical lecture for field application cases of industrial by-product and recycled coarse aggregate, Korean Recycled Construction Resource Institute, pp.41-95.
  6. Korean Concrete Institute (2012), Structural Concrete Design Code, Ministry of Land, Transport and Maritime Affairs.
  7. Korean Geotechnical Society (2009), Design criteria of structure foundation, Ministry of Land, Transport and Maritime Affairs.
  8. Lee, J.-Y., Choi, S.-H., Kang, S.-H. and Lee, K.-M. (1999), "Influence of Fly Ash Content with Respect to the Fresh and Mechanical Properties in Concrete", Journal of Korea Concrete Institute, Vol.11, No.6, pp.25-33. https://doi.org/10.22636/JKCI.1999.11.6.25
  9. Lee, K.-W. (2006), Design method of the geosynthetic-reinforced and pile-supported embankment system to control lateral flow in soft grounds, Ph.D Thesis, University of Chung-Ang.
  10. Lee, M.-W., Heo, Yol. and Shin, E.-C. (2000), "Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay", Journal of the Korean Society of Civil Engineers, Vol.20, No.5-C, pp.453-460.
  11. Lin, K.Q. and Wong, I.H. (1999), "Use of deep cement mixing to reduce settlements at bridge approaches." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(4), 309-320. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(309)
  12. Tsukada, Y., Isoda, T., and Yamanouchi, T. (1993), "Geogrid Subgrade Reinforcement and deep foundation Improvement: Yono City, Japan." Proceedings, Geosynthetics Case Histories, International Society for Soil Mechanics and Foundation Engineering, Committee TC9, 158-159.

피인용 문헌

  1. 연약지반 개량시 지오그리드 보강효과에 관한 실험적 연구 vol.17, pp.2, 2016, https://doi.org/10.12814/jkgss.2018.17.2.001