JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 29, No. 1, 2016 http://dx.doi.org/10.14403/jcms.2016.29.1.117

ON THE RATIO OF RELATIVE CONGRUENCE ZETA FUNCTIONS OF CYCLOTOMIC FUNCTION FIELDS

JAEHYUN AHN*

ABSTRACT. In this paper we give a determinant formula for the ratio of relative congruence zeta functions of cyclotomic function fields.

1. Introduction

Let $\mathbf{k} = \mathbb{F}_q(T)$ be the rational function field over the finite field \mathbb{F}_q and $\mathbb{A} = \mathbb{F}_q[T]$. Write $\mathbb{A}^+ = \{1 \neq M \in \mathbb{A} : M \text{ is monic}\}$ and $\mathbb{A}_{irr}^+ = \{P \in \mathbb{A}^+ : P \text{ is irreducible}\}$ for simplicity. For any $M \in \mathbb{A}^+$, we denote by K_M for the *M*th cyclotomic function field and K_M^+ for the maximal real subfield of K_M .

It is known that there exists a polynomial $P_{K_M}(X) \in \mathbb{Z}[X]$ such that

$$\zeta(s, K_M) = \frac{P_{K_M}(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})},$$

where $\zeta(s, K_M)$ is the congruence zeta function of K_M and $P_{K_M}(1)$ is equal to the divisor class number h_{K_M} of K_M . Let $\zeta^{(-)}(s, K_M) = \zeta(s, K_M)/\zeta(s, K_M^+)$, called the relative congruence zeta function of K_M . Then we have $\zeta^{(-)}(s, K_M) = P_{K_M}^{(-)}(q^{-s})$, where $P_{K_M}^{(-)}(X) = P_{K_M}(X)/P_{K_M^+}(X)$.

In 2010, Shiomi has expressed the polynomial $P_{K_M}^{(-)}(X)$ as the determinant of matrix up to some polynomial [5]. Recently, author and Ka gave another determinant fomula for $P_{K_M}^{(-)}(X)$ [1]. In 2007, author and Jung give determinant formulas for the ratio of class numbers of cyclotomic function fields [3]. The aim of this paper is to give an elementary determinant formula for ratio $P_{K_M}^{(-)}(X)/P_{K_N}^{(-)}(X)$ with $M, N \in \mathbb{A}^+, N|M$.

Received January 08, 2016; Accepted Feburary 05, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R38.

Key words and phrases: congruence zeta function, cyclotomic function fields.

This work was supported by the CNU research fund of Chungnam National University in 2014.

Jaehyun Ahn

2. Preliminaries

Let F be a finite extension of k which is contained in some cyclotomic extension K_M . Let $N \in \mathbb{A}^+$ be the conductor of F, that is, K_N is the smallest cyclotomic function field containing F. Let $\zeta(s, F)$ be the congruence zeta function of F given by

$$\zeta(s,F) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{N\mathfrak{p}^s}\right)^{-1},$$

where \mathfrak{p} runs over all primes of F. It is well known that there exists a polynomial $P_F(X) \in \mathbb{Z}[X]$ of degree 2g, where g is the genus of F, such that

$$\zeta(s,F) = \frac{P_F(q^{-s})}{(1-q^{-s})(1-q^{1-s})}.$$

Moreover, the polynomial $P_F(X)$ satisfies $P_F(0) = 1$ and $P_F(1) = h_F$, where h_F is the divisor class number of F.

Let X_F be the group of primitive Dirichlet characters of \mathbb{A} associated to F. For $\chi \in X_F$, let $L(s,\chi)$ be the *L*-function associated to χ given by

$$L(s,\chi) = \prod_{P \in \mathbb{A}^+_{irr}} \left(1 - \chi(P)q^{-s \deg P}\right)^{-1}$$

For any $\chi \in X_F$, let $F_{\chi} \in \mathbb{A}^+$ be the conductor of χ and $\tilde{\chi} = \chi \circ \pi_{\chi}$, where $\pi_{\chi} : (\mathbb{A}/N\mathbb{A})^* \to (\mathbb{A}/F_{\chi}\mathbb{A})^*$ is the canonical homomorphism. Let $\zeta^{(-)}(s,F) = \zeta(s,F)/\zeta(s,F^+)$ be the relative congruence zeta function of F and $P_F^{(-)}(X) = P_F(X)/P_{F^+}(X)$. Then

(2.1)
$$\prod_{\chi \in X_F^-} L(s, \tilde{\chi}) = P_F^{(-)}(q^{-s}) J_F^{(-)}(q^{-s}),$$

where $X_F^- = X_F \setminus X_{F^+}$ and

$$J_F^{(-)}(X) = \prod_{\chi \in X_F^-} \prod_{Q \in \mathbb{A}_{\operatorname{irr}}^+, Q \mid N} \left(1 - \chi(Q) X^{\deg Q} \right).$$

To find a determinant formula for the ratio of relative congruence zeta functions, we need a variation of group determinant formula. Let G be a finite abelian group and let $L^2(G)$ be the vector space of complex-valued functions on G. Let \widehat{G} be the character group of G with values in \mathbb{C} . For any subgroup H of G, we define $\widehat{G}^H = \{\chi \in \widehat{G} : \chi(\sigma) = 1 \text{ for all } \sigma \in H\}$ and let $\mathcal{R}_{G/H}$ be any system of representatives of G/H. When $\mathcal{R}_{G/H}$ is

118

fixed, we define a function $r_H : G \to G$ such that $r_H(\sigma)H = \sigma H$ with $r_H(\sigma) \in \mathcal{R}_{G/H}$ for each $\sigma \in G$.

LEMMA 2.1. [3, Theorem 2.4] For any two subgroups H, H' of G, suppose that $\mathcal{R}_{G/H}, \mathcal{R}_{G/H'}$ and $\mathcal{R}_{G/HH'}$ satisfy the condition that $r_H \circ$ $r_{H'} = r_{H'} \circ r_H = r_{HH'}$ as functions from G to G. Then, for any $f \in L^2(G)$, we have

$$\prod_{\substack{\chi \notin \widehat{G}^{H} \cup \widehat{G}^{H'} \sigma \in G}} \sum_{\sigma \in G} \chi(\sigma) f(\sigma)$$

= det $\left(f(\sigma \tau^{-1}) - f(\sigma r_{H}(\tau)^{-1}) - f(\sigma r_{H'}(\tau)^{-1}) + f(\sigma r_{HH'}(\tau)^{-1}) \right)_{\sigma,\tau}$

where σ, τ run through $G \setminus (\mathcal{R}_{G/H} \cup \mathcal{R}_{G/H'})$.

It is easy to see that Lemma 2.1 also holds when f is a function from G to $\mathbb{Z}[X]$.

3. Ratio of the relative congruence zeta functions

From now on, we fix $M, N \in \mathbb{A}^+$ with N|M. Let $G_M = \operatorname{Gal}(K_M/k)$, $G_N = \operatorname{Gal}(K_N/k)$, $J = \operatorname{Gal}(K_M/K_M^+)$ and $H = \operatorname{Gal}(K_M/K_N)$. It is well-known that $G_M \cong (\mathbb{A}/M\mathbb{A})^*, G_N \cong (\mathbb{A}/N\mathbb{A})^*$ and $J \cong \mathbb{F}_q^*$. For the cyclotomic theory of function fields, we refer to [4, Chapter 12]. Under the above isomorphisms, we may identify X_{K_M} ($X_{K_M^+}$ and X_{K_N} resp.) with \widehat{G}_M (\widehat{G}_M^J and \widehat{G}_M^H resp.) Let $\mathbb{M}_M = \{A \in \mathbb{A} : A \neq 0, \deg A < \deg M, \gcd(A, M) = 1\}$. For $\alpha \in (\mathbb{A}/M\mathbb{A})^*$, let A_α be an element of \mathbb{M}_M , which corresponds to α (that is, $A_\alpha + M\mathbb{A} = \alpha$). And let $\operatorname{sgn}_M(\alpha)$ be the leading coefficient of A_α and $\deg_M(\alpha) = \deg A_\alpha$. Now, we define a function $f : (\mathbb{A}/M\mathbb{A})^* \to \mathbb{Z}[X]$ by

$$f(\alpha) := \begin{cases} X^{\deg_M(\alpha)}, & \text{if } \operatorname{sgn}_M(\alpha) = 1\\ 0, & \text{otherwise.} \end{cases}$$

Under the isomorphism $G_M \cong (\mathbb{A}/M\mathbb{A})^*$, we also view f as a function from G_M to $\mathbb{Z}[X]$. Let $\mathbb{M}^*_{M,N} = \{A \in \mathbb{M}_M : (A)_N \in \mathbb{M}^+_N\}$, where $(A)_N$ is the element of \mathbb{M}_N which satisfy $A \equiv (A)_N \pmod{N}$. Note that $\mathbb{M}^*_{M,N}$, \mathbb{M}_N and \mathbb{M}^+_N become systems of representatives of G_M/J , G_M/H and G_M/JH repectively, under the map $\mathbb{M}_M \leftrightarrow (\mathbb{A}/M\mathbb{A})^* \cong G_M$. Finally, we define the matrix

$$E_{M,N}^{(-)}(X) = (X^{\deg_M(AB^{-1})} - X^{\deg_M(A(B/\operatorname{sgn}_N(B))^{-1})}) - X^{\deg_M(A(B)_N^{-1})} + X^{\deg_M(A(B)_N/\operatorname{sgn}_N(B))^{-1})})_{A,B},$$

Jaehyun Ahn

where A, B run over $\mathbb{M}_M \setminus (\mathbb{M}_{M,N}^* \cup \mathbb{M}_N)$ and B^{-1} denote the unique element of \mathbb{M}_M which satisfy $BB^{-1} \equiv 1 \pmod{M}$.

THEOREM 3.1. For any $M, N \in \mathbb{A}^+$ with N|M, we have

$$\det E_{M,N}^{(-)}(X) = \frac{P_{K_M}^{(-)}(X)}{P_{K_N}^{(-)}(X)} \frac{J_{K_M}^{(-)}(X)}{J_{K_N}^{(-)}(X)}.$$

Proof. For $\chi \in X_{K_M}^-$, as in the proof of [5, Theorem 3.1] or [2, Lemma 3], we have

$$L(s,\tilde{\chi}) = \sum_{\alpha \in (\mathbb{A}/M\mathbb{A})^*, \operatorname{sgn}_M(\alpha)=1} \tilde{\chi}(\alpha) q^{-\deg_M(\alpha)s}$$
$$= \sum_{\alpha \in (\mathbb{A}/M\mathbb{A})^*} \tilde{\chi}(\alpha) f(\alpha)|_{X=q^{-s}}$$

From Lemma 2.1, we have

$$\prod_{\chi \in X_{K_M} \setminus (X_{K_M}^+ \cup X_{K_N})} L(s, \tilde{\chi})$$

$$= \left(\prod_{\chi \in X_{K_M} \setminus (X_{K_M}^+ \cup X_{K_N})} \sum_{\alpha \in (\mathbb{A}/M\mathbb{A})^*} \tilde{\chi}(\alpha) f(\alpha) \right)_{X=q^{-s}}$$

$$= \det \left(f(\sigma\tau^{-1}) - f(\sigma r_J(\tau)^{-1}) - f(\sigma r_H(\tau)^{-1}) + f(\sigma r_{JH}(\tau)^{-1}) \right)_{\sigma,\tau}|_{X=q^{-s}},$$

where σ, τ run through $G_M \setminus (\mathcal{R}_{G_M/J} \cup \mathcal{R}_{G_M/H})$ and we view f as a function on G_M . Thus, from (2.1), we have

$$\det \left(f(\sigma\tau^{-1}) - f(\sigma r_J(\tau)^{-1}) - f(\sigma r_H(\tau)^{-1}) + f(\sigma r_{JH}(\tau)^{-1}) \right)_{\sigma,\tau}$$

= $\frac{P_{K_M}^{(-)}(X)}{P_{K_N}^{(-)}(X)} \frac{J_{K_M}^{(-)}(X)}{J_{K_N}^{(-)}(X)}.$

Considering the map $\mathbb{M}_M \leftrightarrow (\mathbb{A}/M\mathbb{A})^* \cong G_M$ and the definition of f, we get the result. \Box

REMARK 3.2. The polynomial $J_M^{(-)}(X)$ can be easily computed and $J_M^{(-)}(X) = 1$ when M is a power of an irreducible polynomial [5, Proposition 3.1].

120

References

- J. Ahn and D. Ka, A determinant formula for the relative congruent zeta function in cyclotomic function fields, J. Chungcheong Math. Soc. 28 (2015), 83-88.
- [2] S. Galovich and M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), no. 3, 363-375.
- [3] H. Jung and J. Ahn, Group determinant formulas and class numbers of cyclotomic fields, J. Korean Math. Soc. 44 (2007), no. 3, 499-509.
- [4] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002.
- [5] D. Shiomi, A determinant formula for relative congruence zeta functions for cyclotomic function fields, J. Aust. Math. Soc. 89 (2010), 133-144.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: jhahn@cnu.ac.kr