ON THE RATIO OF RELATIVE CONGRUENCE ZETA FUNCTIONS OF CYCLOTOMIC FUNCTION FIELDS

Jaehyun Ahn*

Abstract

In this paper we give a determinant formula for the ratio of relative congruence zeta functions of cyclotomic function fields.

1. Introduction

Let $\mathrm{k}=\mathbb{F}_{q}(T)$ be the rational function field over the finite field \mathbb{F}_{q} and $\mathbb{A}=\mathbb{F}_{q}[T]$. Write $\mathbb{A}^{+}=\{1 \neq M \in \mathbb{A}: M$ is monic $\}$ and $\mathbb{A}_{\text {irr }}^{+}=$ $\left\{P \in \mathbb{A}^{+}: P\right.$ is irreducible $\}$ for simplicity. For any $M \in \mathbb{A}^{+}$, we denote by K_{M} for the M th cyclotomic function field and K_{M}^{+}for the maximal real subfield of K_{M}.

It is known that there exists a polynomial $P_{K_{M}}(X) \in \mathbb{Z}[X]$ such that

$$
\zeta\left(s, K_{M}\right)=\frac{P_{K_{M}}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)},
$$

where $\zeta\left(s, K_{M}\right)$ is the congruence zeta function of K_{M} and $P_{K_{M}}(1)$ is equal to the divisor class number $h_{K_{M}}$ of K_{M}. Let $\zeta^{(-)}\left(s, K_{M}\right)=$ $\zeta\left(s, K_{M}\right) / \zeta\left(s, K_{M}^{+}\right)$, called the relative congruence zeta function of K_{M}. Then we have $\zeta^{(-)}\left(s, K_{M}\right)=P_{K_{M}}^{(-)}\left(q^{-s}\right)$, where $P_{K_{M}}^{(-)}(X)=P_{K_{M}}(X) / P_{K_{M}^{+}}(X)$.

In 2010, Shiomi has expressed the polynomial $P_{K_{M}}^{(-)}(X)$ as the determinant of matrix up to some polynomial [5]. Recently, author and Ka gave another determinant fomula for $P_{K_{M}}^{(-)}(X)$ [1]. In 2007, author and Jung give determinant formulas for the ratio of class numbers of cyclotomic function fields [3]. The aim of this paper is to give an elementary determinant formula for ratio $P_{K_{M}}^{(-)}(X) / P_{K_{N}}^{(-)}(X)$ with $M, N \in \mathbb{A}^{+}, N \mid M$.

Received January 08, 2016; Accepted Feburary 05, 2016.
2010 Mathematics Subject Classification: Primary 11R58, 11R60, 11R38.
Key words and phrases: congruence zeta function, cyclotomic function fields.
This work was supported by the CNU research fund of Chungnam National University in 2014.

2. Preliminaries

Let F be a finite extension of k which is contained in some cyclotomic extension K_{M}. Let $N \in \mathbb{A}^{+}$be the conductor of F, that is, K_{N} is the smallest cyclotomic function field containing F. Let $\zeta(s, F)$ be the congruence zeta function of F given by

$$
\zeta(s, F)=\prod_{\mathfrak{p}}\left(1-\frac{1}{N \mathfrak{p}^{s}}\right)^{-1}
$$

where \mathfrak{p} runs over all primes of F. It is well known that there exists a polynomial $P_{F}(X) \in \mathbb{Z}[X]$ of degree $2 g$, where g is the genus of F, such that

$$
\zeta(s, F)=\frac{P_{F}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} .
$$

Moreover, the polynomial $P_{F}(X)$ satisfies $P_{F}(0)=1$ and $P_{F}(1)=h_{F}$, where h_{F} is the divisor class number of F.

Let X_{F} be the group of primitive Dirichlet characters of \mathbb{A} associated to F. For $\chi \in X_{F}$, let $L(s, \chi)$ be the L-function associated to χ given by

$$
L(s, \chi)=\prod_{P \in \mathbb{A}_{\mathrm{irr}}^{+}}\left(1-\chi(P) q^{-s \operatorname{deg} P}\right)^{-1}
$$

For any $\chi \in X_{F}$, let $F_{\chi} \in \mathbb{A}^{+}$be the conductor of χ and $\tilde{\chi}=\chi \circ \pi_{\chi}$, where $\pi_{\chi}:(\mathbb{A} / N \mathbb{A})^{*} \rightarrow\left(\mathbb{A} / F_{\chi} \mathbb{A}\right)^{*}$ is the canonical homomorphism. Let $\zeta^{(-)}(s, F)=\zeta(s, F) / \zeta\left(s, F^{+}\right)$be the relative congruence zeta function of F and $P_{F}^{(-)}(X)=P_{F}(X) / P_{F^{+}}(X)$. Then

$$
\begin{equation*}
\prod_{\chi \in X_{F}^{-}} L(s, \tilde{\chi})=P_{F}^{(-)}\left(q^{-s}\right) J_{F}^{(-)}\left(q^{-s}\right) \tag{2.1}
\end{equation*}
$$

where $X_{F}^{-}=X_{F} \backslash X_{F^{+}}$and

$$
J_{F}^{(-)}(X)=\prod_{\chi \in X_{F}^{-}} \prod_{Q \in \mathbb{A}_{\mathrm{irr}}^{+}, Q \mid N}\left(1-\chi(Q) X^{\operatorname{deg} Q}\right)
$$

To find a determinant formula for the ratio of relative congruence zeta functions, we need a variation of group determinant formula. Let G be a finite abelian group and let $L^{2}(G)$ be the vector space of complex-valued functions on G. Let \widehat{G} be the character group of G with values in \mathbb{C}. For any subgroup H of G, we define $\widehat{G}^{H}=\{\chi \in \widehat{G}: \chi(\sigma)=1$ for all $\sigma \in H\}$ and let $\mathcal{R}_{G / H}$ be any system of representatives of G / H. When $\mathcal{R}_{G / H}$ is
fixed, we define a function $r_{H}: G \rightarrow G$ such that $r_{H}(\sigma) H=\sigma H$ with $r_{H}(\sigma) \in \mathcal{R}_{G / H}$ for each $\sigma \in G$.

Lemma 2.1. [3, Theorem 2.4] For any two subgroups H, H^{\prime} of G, suppose that $\mathcal{R}_{G / H}, \mathcal{R}_{G / H^{\prime}}$ and $\mathcal{R}_{G / H H^{\prime}}$ satisfy the condition that $r_{H} \circ$ $r_{H^{\prime}}=r_{H^{\prime}} \circ r_{H}=r_{H H^{\prime}}$ as functions from G to G. Then, for any $f \in$ $L^{2}(G)$, we have

$$
\begin{aligned}
& \prod_{\chi \notin \widehat{G}^{H} \cup \widehat{G}^{H^{\prime}}} \sum_{\sigma \in G} \chi(\sigma) f(\sigma) \\
= & \operatorname{det}\left(f\left(\sigma \tau^{-1}\right)-f\left(\sigma r_{H}(\tau)^{-1}\right)-f\left(\sigma r_{H^{\prime}}(\tau)^{-1}\right)+f\left(\sigma r_{H H^{\prime}}(\tau)^{-1}\right)\right)_{\sigma, \tau},
\end{aligned}
$$

where σ, τ run through $G \backslash\left(\mathcal{R}_{G / H} \cup \mathcal{R}_{G / H^{\prime}}\right)$.
It is easy to see that Lemma 2.1 also holds when f is a function from G to $\mathbb{Z}[X]$.

3. Ratio of the relative congruence zeta functions

From now on, we fix $M, N \in \mathbb{A}^{+}$with $N \mid M$. Let $G_{M}=\operatorname{Gal}\left(K_{M} / \mathrm{k}\right)$, $G_{N}=\operatorname{Gal}\left(K_{N} / \mathrm{k}\right), J=\operatorname{Gal}\left(K_{M} / K_{M}^{+}\right)$and $H=\operatorname{Gal}\left(K_{M} / K_{N}\right)$. It is well-known that $G_{M} \cong(\mathbb{A} / M \mathbb{A})^{*}, G_{N} \cong(\mathbb{A} / N \mathbb{A})^{*}$ and $J \cong \mathbb{F}_{q}^{*}$. For the cyclotomic theory of function fields, we refer to [4, Chapter 12]. Under the above isomorphisms, we may identify $X_{K_{M}}\left(X_{K_{M}^{+}}\right.$and $X_{K_{N}}$ resp.) with $\widehat{G}_{M}\left(\widehat{G}_{M}^{J}\right.$ and \widehat{G}_{M}^{H} resp.) Let $\mathbb{M}_{M}=\{A \in \mathbb{A}: A \neq 0, \operatorname{deg} A<$ $\operatorname{deg} M, \operatorname{gcd}(A, M)=1\}$. For $\alpha \in(\mathbb{A} / M \mathbb{A})^{*}$, let A_{α} be an element of \mathbb{M}_{M}, which corresponds to α (that is, $A_{\alpha}+M \mathbb{A}=\alpha$). And let $\operatorname{sgn}_{M}(\alpha)$ be the leading coefficient of A_{α} and $\operatorname{deg}_{M}(\alpha)=\operatorname{deg} A_{\alpha}$. Now, we define a function $f:(\mathbb{A} / M \mathbb{A})^{*} \rightarrow \mathbb{Z}[X]$ by

$$
f(\alpha):= \begin{cases}X^{\operatorname{deg}_{M}(\alpha)}, & \text { if } \operatorname{sgn}_{M}(\alpha)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Under the isomorphism $G_{M} \cong(\mathbb{A} / M \mathbb{A})^{*}$, we also view f as a function from G_{M} to $\mathbb{Z}[X]$. Let $\mathbb{M}_{M, N}^{*}=\left\{A \in \mathbb{M}_{M}:(A)_{N} \in \mathbb{M}_{N}^{+}\right\}$, where $(A)_{N}$ is the element of \mathbb{M}_{N} which satisfy $A \equiv(A)_{N}(\bmod N)$. Note that $\mathbb{M}_{M, N}^{*}, \mathbb{M}_{N}$ and \mathbb{M}_{N}^{+}become systems of representatives of $G_{M} / J, G_{M} / H$ and $G_{M} / J H$ repectively, under the map $\mathbb{M}_{M} \leftrightarrow(\mathbb{A} / M \mathbb{A})^{*} \cong G_{M}$. Finally, we define the matrix

$$
\begin{aligned}
& E_{M, N}^{(-)}(X)=\left(X^{\operatorname{deg}_{M}\left(A B^{-1}\right)}-X^{\operatorname{deg}_{M}\left(A\left(B / \operatorname{sgn}_{N}(B)\right)^{-1}\right)}\right. \\
& \left.-X^{\operatorname{deg}_{M}\left(A(B)_{N}^{-1}\right)}+X^{\operatorname{deg}_{M}\left(A\left((B)_{N} / \operatorname{sgn}_{N}(B)\right)^{-1}\right)}\right)_{A, B}
\end{aligned}
$$

where A, B run over $\mathbb{M}_{M} \backslash\left(\mathbb{M}_{M, N}^{*} \cup \mathbb{M}_{N}\right)$ and B^{-1} denote the unique element of \mathbb{M}_{M} which satisfy $B B^{-1} \equiv 1(\bmod M)$.

Theorem 3.1. For any $M, N \in \mathbb{A}^{+}$with $N \mid M$, we have

$$
\operatorname{det} E_{M, N}^{(-)}(X)=\frac{P_{K_{M}}^{(-)}(X)}{P_{K_{N}}^{(-)}(X)} \frac{J_{K_{M}}^{(-)}(X)}{J_{K_{N}}^{(-)}(X)}
$$

Proof. For $\chi \in X_{K_{M}}^{-}$, as in the proof of [5, Theorem 3.1] or [2, Lemma 3], we have

$$
\begin{aligned}
L(s, \tilde{\chi}) & =\sum_{\alpha \in(\mathbb{A} / M \mathbb{A})^{*}, \operatorname{sgn}_{M}(\alpha)=1} \tilde{\chi}(\alpha) q^{-\operatorname{deg}_{M}(\alpha) s} \\
& =\left.\sum_{\alpha \in(\mathbb{A} / M \mathbb{A})^{*}} \tilde{\chi}(\alpha) f(\alpha)\right|_{X=q^{-s}}
\end{aligned}
$$

From Lemma 2.1, we have

$$
\begin{aligned}
& \prod_{\chi \in X_{K_{M}} \backslash\left(X_{K_{M}}^{+} \cup X_{K_{N}}\right)} L(s, \tilde{\chi}) \\
= & \left(\prod_{\chi \in X_{K_{M}} \backslash\left(X_{K_{M}}^{+} \cup X_{K_{N}}\right)} \sum_{\alpha \in(\mathbb{A} / M \mathbb{A})^{*}} \tilde{\chi}(\alpha) f(\alpha)\right)_{X=q^{-s}} \\
= & \left.\operatorname{det}\left(f\left(\sigma \tau^{-1}\right)-f\left(\sigma r_{J}(\tau)^{-1}\right)-f\left(\sigma r_{H}(\tau)^{-1}\right)+f\left(\sigma r_{J H}(\tau)^{-1}\right)\right)_{\sigma, \tau}\right|_{X=q^{-s}},
\end{aligned}
$$

where σ, τ run through $G_{M} \backslash\left(\mathcal{R}_{G_{M} / J} \cup \mathcal{R}_{G_{M} / H}\right)$ and we view f as a function on G_{M}. Thus, from (2.1), we have

$$
\begin{aligned}
& \operatorname{det}\left(f\left(\sigma \tau^{-1}\right)-f\left(\sigma r_{J}(\tau)^{-1}\right)-f\left(\sigma r_{H}(\tau)^{-1}\right)+f\left(\sigma r_{J H}(\tau)^{-1}\right)\right)_{\sigma, \tau} \\
= & \frac{P_{K_{M}}^{(-)}(X)}{P_{K_{N}}^{(-)}(X)} \frac{J_{K_{M}}^{(-)}(X)}{J_{K_{N}}^{(-)}(X)} .
\end{aligned}
$$

Considering the $\operatorname{map} \mathbb{M}_{M} \leftrightarrow(\mathbb{A} / M \mathbb{A})^{*} \cong G_{M}$ and the definition of f, we get the result.

REmark 3.2. The polynomial $J_{M}^{(-)}(X)$ can be easily computed and $J_{M}^{(-)}(X)=1$ when M is a power of an irreducible polynomial [5, Proposition 3.1].

References

[1] J. Ahn and D. Ka, A determinant formula for the relative congruent zeta function in cyclotomic function fields, J. Chungcheong Math. Soc. 28 (2015), 83-88.
[2] S. Galovich and M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), no. 3, 363-375.
[3] H. Jung and J. Ahn, Group determinant formulas and class numbers of cyclotomic fields, J. Korean Math. Soc. 44 (2007), no. 3, 499-509.
[4] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002.
[5] D. Shiomi, A determinant formula for relative congruence zeta functions for cyclotomic function fields, J. Aust. Math. Soc. 89 (2010), 133-144.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jhahn@cnu.ac.kr

