STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES

Sang-Cho Chung*

Abstract

In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality $\left\|f\left(x_{1}+x_{2}\right)+f\left(x_{2}+x_{3}\right)+\cdots+f\left(x_{n}+x_{1}\right)\right\| \leq\left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|$ in Banach spaces where a positive integer $n \geq 3$ and a real number t such that $2 \leq t<n$.

1. Introduction and preliminaries

In 1940, S.M. Ulam [5] suggested the stability problem of functional equations concerning the stability of group homomorphisms as follows: Let (\mathcal{G}, \circ) be a group and let (\mathcal{H}, \star, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta=\delta(\varepsilon)>0$ such that if a map$\operatorname{ping} f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the inequality $d(f(x \circ y), f(x) \star f(y))<\delta$ for all $x, y \in \mathcal{G}$, then a homomorphism $F: \mathcal{G} \rightarrow \mathcal{H}$ exits with $d(f(x), F(x))<\varepsilon$ for all $x \in \mathcal{G}$?

In the next year, D.H. Hyers [2] gave a first (partial) affirmative answer to the question of Ulam for Banach spaces as follows: If $\delta>0$ and if $f: \mathcal{E} \rightarrow \mathcal{F}$ is a mapping between Banach spaces \mathcal{E} and \mathcal{F} satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in \mathcal{E}$, then there is a unique additive mapping $A: \mathcal{E} \rightarrow \mathcal{F}$ such that $\|f(x)-A(x)\| \leq \delta$ for all $x, y \in \mathcal{E}$.

Thereafter, we call that type the Hyers-Ulam stability.

[^0]
2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let \mathcal{X} be a normed linear space and \mathcal{Y} a Banach space. In 2007, C. Park, Y. S. Cho and M.-H. Han [4] proved the generalized Hyers-Ulam stability of the additive functional inequality

$$
\|f(x)+f(y)+f(z)\| \leq\|f(x+y+z)\|
$$

in Banach spaces. In 2013, S.-C Chung [1] prove the generalized HyersUlam stability of the additive functional inequality

$$
\left\|f\left(2 x_{1}\right)+f\left(2 x_{2}\right)+\cdots+f\left(2 x_{n}\right)\right\| \leq\left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|
$$

in Banach spaces where a positive integer $n \geq 3$ and a real number t such that $2 \leq t<n$.

In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality
$\left\|f\left(x_{1}+x_{2}\right)+f\left(x_{2}+x_{3}\right)+\cdots+f\left(x_{n}+x_{1}\right)\right\| \leq\left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|$
in Banach spaces.
Lemma 2.1. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping. For an odd integer n and a real number t suppose that $3 \leq n$ and $2 \leq t<n$. Then it is additive if and only if it satisfies

$$
\begin{equation*}
\left\|f\left(x_{1}+x_{2}\right)+f\left(x_{2}+x_{3}\right)+\cdots+f\left(x_{n}+x_{1}\right)\right\| \leq\left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\| \tag{2.1}
\end{equation*}
$$ for all $x_{1}, x_{2}, \cdots, x_{n} \in \mathcal{X}$.

Proof. If f is additive, then clearly

$$
\begin{aligned}
& \left\|f\left(x_{1}+x_{2}\right)+f\left(x_{2}+x_{3}\right)+\cdots+f\left(x_{n}+x_{1}\right)\right\| \\
= & \left\|2 f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\| \\
\leq & \left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|
\end{aligned}
$$

for all $x_{i} \in \mathcal{X}$.
Conversely assume that f satisfies (2.1). Letting $x_{i}=0(1 \leq i \leq n)$ in (2.1), we have $\|n f(0)\| \leq\|t f(0)\|$ and so $f(0)=0$ by the hypothesis. Putting $x_{1}=x, x_{2}=-x, x_{i}=0(3 \leq i \leq n)$ in (2.1), we get $\| f(-x)+$ $f(x)\|\leq\| t f(0) \|=0$ and so $f(-x)=-f(x)$ for all $x \in \mathcal{X}$. Setting $x_{1}=x, x_{i}=(-1)^{i} y(2 \leq i \leq n-1), x_{n}=-x-y$ in (2.1), we have

$$
\|f(x+y)+f(-x)+f(-y)\| \leq\|t f(0)\|=0
$$

for all $x, y \in \mathcal{X}$. Thus we obtain $f(x+y)=f(x)+f(y)$ for all $x, y \in$ \mathcal{X}.

Theorem 2.2. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping with $f(0)=0$. For an odd integer n and a real number t suppose that $3 \leq n$ and $2 \leq t<n$. If there is a function $\varphi: \mathcal{X}^{n} \rightarrow[0, \infty)$ satisfying

$$
\begin{align*}
& \left\|f\left(x_{1}+x_{2}\right)+f\left(x_{2}+x_{3}\right)+\cdots+f\left(x_{n}+x_{1}\right)\right\| \\
\leq & \left\|t f\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|+\varphi\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{\varphi}\left(x_{1}, x_{2}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left((-2)^{j} x_{1},(-2)^{j} x_{2}, \cdots,(-2)^{j} x_{n}\right)<\infty \tag{2.3}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that for all $x \in \mathcal{X}$

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2} \widetilde{\varphi}\left(-x, x_{2}, \cdots, x_{n-1}, 2 x\right) \tag{2.4}
\end{equation*}
$$

where $x_{i}=(-1)^{i-1} x(2 \leq i \leq n-1)$.
Proof. Putting $x_{1}=(-2)^{l}(-x), x_{i}=(-2)^{l}(-1)^{i-1} x(2 \leq i \leq l-$ $1), x_{n}=(-2)^{l+1}(-x)$, respectively, and dividing by 2^{l+1} in (2.2), since $f(0)=0$, we get

$$
\begin{aligned}
& \left\|\frac{f\left((-2)^{l+1} x\right)}{(-2)^{l+1}}-\frac{f\left((-2)^{l} x\right)}{(-2)^{l}}\right\| \\
\leq & \frac{1}{2^{l+1}} \varphi\left((-2)^{l}(-x),(-2)^{l}(-x),(-2)^{l} x, \cdots,(-2)^{l}(-x),(-2)^{l+1}(-x)\right)
\end{aligned}
$$

for all $x \in \mathcal{X}$ and all nonnegative integers l. From the above inequality, we have
(2.5)

$$
\begin{aligned}
& \left\|\frac{f\left((-2)^{l} x\right)}{(-2)^{l}}-\frac{f\left((-2)^{m} x\right)}{(-2)^{m}}\right\| \leq \sum_{j=m}^{l-1}\left\|\frac{f\left((-2)^{j+1} x\right)}{(-2)^{j+1}}-\frac{f\left((-2)^{j} x\right)}{(-2)^{j}}\right\| \\
\leq & \sum_{j=m}^{l-1} \frac{1}{2^{j+1}} \varphi\left((-2)^{j}(-x),(-2)^{j}(-x),(-2)^{j} x, \cdots,(-2)^{j}(-x),(-2)^{j+1}(-x)\right)
\end{aligned}
$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, l with $m<l$. By the condition (2.3), the sequence $\left\{\frac{f\left((-2)^{l} x\right)}{(-2)^{l}}\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{\frac{f\left((-2)^{l} x\right)}{(-2)^{l}}\right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ by $A(x):=$
$\lim _{l \rightarrow \infty} \frac{f\left((-2)^{l} x\right)}{(-2)^{l}}$ for all $x \in \mathcal{X}$. Taking $m=0$ and letting n tend to ∞ in (2.5), we have the inequality (2.4).

Replacing $x_{i}(1 \leq i \leq n)$ by $(-2)^{l} x_{i}$, respectively, and dividing by 2^{l} in (2.2), we obtain

$$
\begin{aligned}
& \left\|\frac{f\left((-2)^{l}\left(x_{1}+x_{2}\right)\right)}{(-2)^{l}}+\frac{f\left((-2)^{l}\left(x_{2}+x_{3}\right)\right)}{(-2)^{l}}+\cdots+\frac{f\left((-2)^{l}\left(x_{n}+x_{1}\right)\right)}{(-2)^{l}}\right\| \\
\leq & \left\|\frac{t f\left((-2)^{l}\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right)}{(-2)^{l}}\right\|+\frac{1}{2^{l}} \varphi\left((-2)^{l} x_{1},(-2)^{l} x_{2}, \cdots,(-2)^{l} x_{n}\right)
\end{aligned}
$$

for all $x_{i} \in \mathcal{X}$ and all nonnegative integers l. Since (2.3) gives that

$$
\lim _{l \rightarrow \infty} \frac{1}{2^{l}} \varphi\left((-2)^{l} x_{1},(-2)^{l} x_{2}, \cdots,(-2)^{l} x_{n}\right)=0
$$

for all $x_{i} \in \mathcal{X}$, letting l tend to ∞ in the above inequality, we have $\left\|A\left(x_{1}+x_{2}\right)+A\left(x_{2}+x_{3}\right)+\cdots+A\left(x_{n}+x_{1}\right)\right\| \leq\left\|t A\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|$.
So by Lemma $2.1 A$ is an additive mapping.
Let $A^{\prime}: \mathcal{X} \rightarrow \mathcal{Y}$ be another additive mapping satisfying (2.4). Since both A and A^{\prime} are additive, we have

$$
\begin{aligned}
& \left\|A(x)-A^{\prime}(x)\right\|=\frac{1}{2^{l}}\left\|A\left((-2)^{l} x\right)-A^{\prime}\left((-2)^{l} x\right)\right\| \\
\leq & \frac{1}{2^{l}}\left(\left\|A\left((-2)^{l} x\right)-f\left((-2)^{l} x\right)\right\|+\left\|f\left((-2)^{l} x\right)-A^{\prime}\left((-2)^{l} x\right)\right\|\right) \\
\leq & \frac{1}{2^{l}} \widetilde{\varphi}\left((-2)^{l}(-x),(-2)^{l}(-x),(-2)^{l} x, \cdots,(-2)^{l}(-x),(-2)^{l+1}(-x)\right) \\
= & \sum_{j=l}^{\infty} \frac{1}{2^{j}} \varphi\left((-2)^{l}(-x),(-2)^{l}(-x),(-2)^{l} x, \cdots,(-2)^{l}(-x),(-2)^{l+1}(-x)\right)
\end{aligned}
$$

which goes to zero as $l \rightarrow \infty$ for all $x \in \mathcal{X}$ by (2.3). Therefore, A is a unique additive mapping satisfying (2.4), as desired.

Theorem 2.3. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping with $f(0)=0$. If there is a function $\varphi: \mathcal{X}^{n} \rightarrow[0, \infty)$ satisfying (2.2) and

$$
\begin{equation*}
\widetilde{\varphi}\left(x_{1}, x_{2}, \cdots, x_{n}\right):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x_{1}}{(-2)^{j}}, \frac{x_{2}}{(-2)^{j}}, \cdots, \frac{x_{n}}{(-2)^{j}}\right)<\infty \tag{2.6}
\end{equation*}
$$

for all $x_{i} \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2} \widetilde{\varphi}\left(-x, x_{2}, \cdots, x_{n-1}, 2 x\right) \tag{2.7}
\end{equation*}
$$

where $x_{i}=(-1)^{i-1} x(2 \leq i \leq n-1)$.
Proof. Putting $x_{1}=\frac{-x}{(-2)^{l}}, x_{i}=(-1)^{i} \frac{-x}{(-2)^{l}}(2 \leq i \leq n-1), x_{n}=$ $\frac{-x}{(-2)^{l-1}}$, respectively, and multiplying by 2^{l-1} in (2.2), since $f(0)=0$, we have

$$
\begin{aligned}
& \left\|(-2)^{l} f\left(\frac{x}{(-2)^{l}}\right)-(-2)^{l-1} f\left(\frac{x}{(-2)^{l-1}}\right)\right\| \\
\leq & 2^{l-1} \varphi\left(\frac{-x}{(-2)^{l}}, \frac{-x}{(-2)^{l}}, \frac{x}{(-2)^{l}}, \cdots, \frac{-x}{(-2)^{l}}, \frac{-x}{(-2)^{l-1}}\right)
\end{aligned}
$$

for all $x \in \mathcal{X}$ and all $l \in \mathbb{N}$. From the above inequality, we get

$$
\begin{align*}
& \left\|(-2)^{l} f\left(\frac{x}{(-2)^{l}}\right)-(-2)^{m} f\left(\frac{x}{(-2)^{m}}\right)\right\| \tag{2.8}\\
\leq & \sum_{j=m+1}^{l}\left\|(-2)^{j} f\left(\frac{x}{(-2)^{j}}\right)-(-2)^{j-1} f\left(\frac{x}{(-2)^{j-1}}\right)\right\| \\
\leq & \sum_{j=m+1}^{l} 2^{j-1} \varphi\left(\frac{-x}{(-2)^{j}}, \frac{-x}{(-2)^{j}}, \frac{x}{(-2)^{j}}, \cdots, \frac{-x}{(-2)^{j}}, \frac{-x}{(-2)^{j-1}}\right)
\end{align*}
$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, l with $m<l$. From (2.6), the sequence $\left\{(-2)^{l} f\left(\frac{x}{(-2)^{l}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{(-2)^{l} f\left(\frac{x}{(-2)^{l}}\right)\right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ by $A(x):=\lim _{l \rightarrow \infty}(-2)^{l} f\left(\frac{x}{(-2)^{l}}\right)$ for all $x \in \mathcal{X}$. To prove that A satisfies (2.7), putting $m=0$ and letting $n \rightarrow \infty$ in (2.8), we have

$$
\begin{aligned}
\|f(x)-A(x)\| & \leq \sum_{j=1}^{\infty} 2^{j-1} \varphi\left(\frac{-x}{(-2)^{j}}, \frac{-x}{(-2)^{j}}, \frac{x}{(-2)^{j}}, \cdots, \frac{-x}{(-2)^{j}}, \frac{-x}{(-2)^{j-1}}\right) \\
& =\frac{1}{2} \widetilde{\varphi}(-x,-x, x, \ldots,-x, 2 x)
\end{aligned}
$$

for all $x \in \mathcal{X}$.
Replacing $x_{i}(1 \leq i \leq n)$ by $\frac{x_{i}}{(-2)^{l}}$, respectively, and multiplying by 2^{l} in (2.2), we obtain

$$
\begin{aligned}
& \left\|(-2)^{l} f\left(\frac{x_{1}+x_{2}}{(-2)^{l}}\right)+(-2)^{l} f\left(\frac{x_{2}+x_{3}}{(-2)^{l}}\right)+\cdots+(-2)^{l} f\left(\frac{x_{n}+x_{1}}{(-2)^{l}}\right)\right\| \\
\leq & \left\|t(-2)^{l} f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{(-2)^{l}}\right)\right\|+2^{l} \varphi\left(\frac{x_{1}}{(-2)^{l}}, \frac{x_{2}}{(-2)^{l}}, \cdots, \frac{x_{n}}{(-2)^{l}}\right)
\end{aligned}
$$

for all $x_{i} \in \mathcal{X}$ and all nonnegative integers l. From (2.6) we have the following

$$
\lim _{l \rightarrow \infty} 2^{l} \varphi\left(\frac{x_{1}}{(-2)^{l}}, \frac{x_{2}}{(-2)^{l}}, \cdots, \frac{x_{n}}{(-2)^{l}}\right)=0
$$

for all $x_{i} \in \mathcal{X}$, if we let $l \rightarrow \infty$ in the above inequality, then we have $\left\|A\left(x_{1}+x_{2}\right)+A\left(x_{2}+x_{3}\right)+\cdots+A\left(x_{n}+x_{1}\right)\right\| \leq\left\|t A\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right\|$. for all $x_{i} \in \mathcal{X}$. By Lemma 2.1, the mapping A is additive. The rest of the proof is similar to the corresponding part of the proof of Theorem 2.2.

References

[1] S.-C. Chung, On the stability of a genaral additive functional inequality in Banach spaces, J. Chungcheong Math. Soc. 26 (2013), no. 4, 907-913.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[3] J. R. Lee, C. Park, and D. Y. Shin, Stability of an additive functional inequality in proper CQ*-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
[4] C. Park, Y. S. Cho, and M.-H. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007) Article ID 41820, 13 pages.
[5] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
*
Department of Mathematics Education
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail: math888@naver.com

[^0]: Received December 30, 2015; Accepted February 05, 2016.
 2010 Mathematics Subject Classification: Primary 39B82.
 Key words and phrases: additive functional inequality, Banach space.

