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ON GENERALIZED DERIVATIONS OF

BCH-ALGEBRAS

Kyung Ho Kim*

Abstract. The aim of this paper is to introduce the notion of a
generalized derivations of BCH-algebras and some related proper-
ties are investigated.

1. Introduction

In 1966, Imai and Iseki introduced two classes of abstract algebras,
BCK-algebra and BCI-algebras [6]. It is known that the class of BCI-
algebras is a generalization of the class of BCK-algebras In 1983, Hu and
Li [3] introduced the notion of a BCH-algebra, which is a generalization
of the notions of BCK-algebras and BCI-algebras. They have studied a
few properties of these algebras. In this paper, we introduce the notion of
generalized derivations ofBCH-algebras and investigate some properties
of generalized derivations in a BCH-algebra. Moreover, we introduce
the notions of fixed set and kernel set of generalized derivations in a
BCH-algebra and obtained some interesting properties in medial BCH-
algebras. Also, we discuss the relations between ideals in a medial BCH-
algebras.

2. Preliminary

By a BCH-algebra, we mean an algebra (X, ∗, 0) with a single binary
operation “∗” that satisfies the following identities for any x, y, z ∈ X :

(BCH1) x ∗ x = 0,
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(BCH2) x ≤ y and y ≤ x imply x = y, where x ≤ y if and only if x ∗ y = 0.
(BCH3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

In a BCH-algebra X, the following identities are true for all x, y ∈ X:

(BCH4) (x ∗ (x ∗ y)) ∗ y = 0,
(BCH5) x ∗ 0 = 0 implies x = 0,
(BCH6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(BCH7) x ∗ 0 = x,
(BCH8) (x ∗ y) ∗ x = 0 ∗ y,
(BCH9) x ∗ y = 0 implies 0 ∗ x = 0 ∗ y,

(BCH10) x ∗ (x ∗ y) ≤ y.

Definition 2.1. Let I be a nonempty subset of a BCH-algebra X.
Then I is called an ideal of X if it satisfies:

(i) 0 ∈ I,
(ii) x ∗ y ∈ I and y ∈ I imply x ∈ I.

Definition 2.2. A BCH-algebra X is said to be medial if it satisfies

(x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w)

for all x, y, z, w ∈ X.

In a medial BCH-algebra X, the following identity hold:

(BCH11) x ∗ (x ∗ y) = y for all x, y ∈ X.

Definition 2.3. Let X be a BCH-algebra. Then the set X+ = {x ∈
X|0 ∗ x = 0} is called a BCA-part of X.

Definition 2.4. Let X be a BCH-algebra. Then the set G(X) =
{x ∈ X|0 ∗ x = x}.

Definition 2.5. Let X be a BCH-algebra. If we define an operation
“ + ”, called addition, as x+ y = x ∗ (0 ∗ y), for all x, y ∈ X, then (X,+)
is an abelian group with identity 0 and the additive inverse −x = 0 ∗ x,
for all x ∈ X.

Remark 2.6. If we have a BCH-algebra (X, ∗, 0), it follows from the
above definition that (X,+) is an abelian group with −y = 0 ∗ y, for
all y ∈ X. Then we have x − y = x ∗ y, for all x, y ∈ X. On the other
hand, if we choose an abelian group (X,+) with an identity 0 and define
x ∗ y = x− y, we get a BCH-algebra (X, ∗, 0) where x+ y = x ∗ (0 ∗ y),
for every x, y ∈ X.
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For a BCH-algebra X, we denote x ∧ y = y ∗ (y ∗ x) for all x, y ∈ X.
A BCH-algebra X is said to be commutative if for all x, y ∈ X,

y ∗ (y ∗ x) = x ∗ (x ∗ y), i.e., x ∧ y = y ∧ x.

3. Generalized derivations of BCH-algebras

In what follows, let X denote a BCH-algebra unless otherwise spec-
ified.

Definition 3.1. Let X be a BCH-algebra. A map D : X → X
is called a generalized left-right derivation (briefly, generalized (l, r)-
derivation ) of X if there exists a derivation d : X → X such that

D(x ∗ y) = (D(x) ∗ y) ∧ (x ∗ d(y)),

for every x, y ∈ X. If D satisfies the identity D(x ∗ y) = (x ∗ D(y)) ∧
(d(x)∗y), for all x, y ∈ X, then it is said that D is a generalized right-left
derivation (briefly, generalized (r, l)-derivation) of X.

Moreover, If D is both a generalized (l, r) and (r, l)-derivation of X,
it is said that D is a generalized derivation of X.

Example 3.2. Let X = {0, 1, 2} be a BCH-algebra with Cayley
table as follows:

∗ 0 1 2
0 0 0 2
1 1 0 2
2 2 2 0

Define a self-map d : X → X by

d(x) =

{
0 if x = 0, 1

2 if x = 2

Then it is easy to check that d is both (l, r) and (r, l)-derivation of a
BCH-algebra X. Also, define a map D : X → X by

D(x) =

{
2 if x = 0, 1

0 if x = 2.

It is easy to verify that D is a generalized derivation of X.

Example 3.3. Let X = {0, 1, 2, 3} be a BCH-algebra with Cayley
table as follows:
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∗ 0 1 2 3
0 0 0 2 2
1 1 0 2 2
2 2 2 0 0
3 3 2 1 0

Define a self-map d : X → X by

d(x) =

{
2 if x = 0, 1

0 if x = 2, 3

Then it is easy to check that d is a derivation of a BCH-algebra X.
Also, define a map D : X → X by

D(x) =

{
0 if x = 0, 1

2 if x = 2, 3.

It is easy to verify that D is a generalized derivation of X.

Definition 3.4. A self-map D of a BCH-algebra X is said to be
regular if D(0) = 0.

Example 3.5. A generalized derivation D in Example 3.3 is regular.

Proposition 3.6. Let D be a self-map of a medial BCH-algebra X.
Then,

(1) If D is a generalized (l, r)-derivation of X, then D(x) = D(x)∧ x,
for all x ∈ X,

(2) If D is a generalized (r, l)-derivation of X, then D(0) = 0 if and
only if D(x) = x ∧ d(x), for all x ∈ X.

Proof. (1) Let D be a generalized (r, l)-derivation of X. Then, for all
x, y ∈ X,
D(x) = D(x ∗ 0) = (D(x) ∗ 0) ∧ (x ∗ d(0))

= D(x) ∧ (x ∗ d(0)) = (x ∗ d(0)) ∗ ((x ∗ d(0)) ∗D(x))

= (x ∗ d(0)) ∗ ((x ∗D(x)) ∗ d(0)) ( since (x ∗ y) ∗ z = (x ∗ z) ∗ y)

= x ∗ (x ∗D(x)) ( since (x ∗ y) ∗ (t ∗ s) = (x ∗ t) ∗ (y ∗ s))
= D(x) ∧ x.

(2) Let D be a generalized (r, l)-derivation on X such that D(0) = 0.
Then

D(x ∗ y) = (x ∗D(y)) ∧ (d(x) ∗ y)) (1)
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for all x, y ∈ X. Putting y = 0 in (1), we have D(x ∗ 0) = (x ∗D(0)) ∧
(d(x) ∗ 0), that is, D(x) = (x ∗ 0) ∧ d(x) = x ∧ d(x), for all x ∈ X.
Conversely, if D(x) = x ∧ d(x), then we have

D(0) = 0 ∧ d(0) = d(0) ∗ (d(0) ∗ 0) = d(0) ∗ d(0) = 0.

Proposition 3.7. Let D be a generalized derivation of X. If D(x) ∗
x = 0 for all x ∈ X, then D is regular.

Proof. Let D(x) ∗ x = 0 for all x ∈ X. Then we have

D(0) = D(x ∗ x) = (D(x) ∗ x) ∧ (x ∗ d(x))

= 0 ∧ (x ∗ d(x)) = (x ∗ d(x)) ∗ ((x ∗ d(x)) ∗ 0)

= (x ∗ d(x)) ∗ (x ∗ d(x)) = 0.

Hence D is regular.

Proposition 3.8. Let D be a generalized derivation of X. Then we
have for all x, y ∈ X,

(1) D(x ∗ y) ≤ D(x) ∗ y,
(2) D(x ∗D(x)) = 0.

Proof. Let D be a generalized derivation of X. Then for all x, y ∈ X,
(1)

D(x ∗ y) = (D(x) ∗ y) ∧ (x ∗ d(y))

= (x ∗ d(x)) ∗ ((x ∗ d(x)) ∗ (D(x) ∗ y))

≤ D(x) ∗ y.
(2) For any x ∈ X, we have

D(x ∗D(x)) = (D(x) ∗D(x)) ∧ (x ∗ d(D(x)))

= 0 ∧ (x ∗ d(D(x))) = 0.

Proposition 3.9. Let D be a generalized (l, r)-derivation of X. If
there exists a ∈ X such that D(x) ∗ a = 0 for all x ∈ X, then D is
regular.

Proof. Let D(x) ∗ a = 0 for all x ∈ X. Then

0 = D(x ∗ a) ∗ a = ((D(x) ∗ a) ∧ (x ∗ d(a))) ∗ a
= (0 ∧ (x ∗ d(a))) ∗ a
= 0 ∗ a,
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that is, a ∈ X+ and so

D(0) = D(0 ∗ a)

= (D(0) ∗ a) ∧ (0 ∗ d(a))

= 0 ∧ (0 ∗ d(a)) = 0.

Hence D is regular.

Proposition 3.10. Let D be a generalized (r, l)-derivation of X. If
there exists a ∈ X such that a ∗ D(x) = 0 for all x ∈ X, then D is
regular.

Proof. Let a ∗D(x) = 0 for all x ∈ X. Then

0 = a ∗D(a ∗ x) = a ∗ ((a ∗D(x)) ∧ (d(a) ∗ x))

= a ∗ (0 ∧ (d(a) ∗ x))

= a ∗ 0 = a

that is, a ∈ X+ and so

D(0) = D(a) = D(a ∗ 0)

= (a ∗D(0)) ∧ (a ∗ d(0))

= 0 ∧ (a ∗ d(0)) = 0.

Hence D is regular.

Proposition 3.11. Let D be a generalized left derivation of X and
let D is regular. Then D : X → X is an identity map if it satisfies
D(x) ∗ y = x ∗D(y) for all x, y ∈ X.

Proof. Since D is regular, we have D(0) = 0. Let x ∗D(y) = D(x) ∗ y
for all x, y ∈ X. Then D(x) = D(x) ∗ 0 = x ∗D(0) = x ∗ 0 = x. Thus D
is an identity map.

Definition 3.12. Let X be a BCH-algebra. A self-map D on X is
said to be isotone if x ≤ y implies D(x) ≤ D(y) for x, y ∈ X.

Proposition 3.13. Let D be a generalized left derivation of X and
let D be regular. Then D(x ∗ y) = D(x) ∗ D(y) implies D(x ∧ y) =
D(x) ∧D(y).

Proof. Let D(x ∗ y) = D(x) ∗D(y) for all x, y ∈ X. Then we have for
all x, y ∈ X,
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D(x ∧ y) = D(y ∗ (y ∗ x))

= D(y) ∗D(y ∗ x)

= D(y) ∗ [D(y) ∗D(x)]

= D(x) ∧D(y)

Proposition 3.14. Let D be a generalized derivation of X. If D(x∧
y) = D(x) ∧D(y) for all x, y ∈ X, then D is isotone.

Proof. Let D(x ∧ y) = D(x) ∧D(y) and x ≤ y for all x, y ∈ X. Then
x ∗ y = 0. Thus, we have

D(x) = D(x ∗ 0)

= D(x ∗ (x ∗ y))

= D(y ∧ x)

= D(y) ∧D(x)

= D(x) ∗ [D(x) ∗D(y)]

≤ D(y).

Hence we get D(x) ≤ D(y), and so D is isotone.

Proposition 3.15. Let D be a generalized derivation of a medial
BCH-algebra X. Then D(x ∗ y) = D(x) ∗ y for all x, y ∈ X.

Proof. Let x, y ∈ X. Then we have

D(x∗y) = (D(x)∗y)∧(x∗d(y)) = (x∗d(y))∗((x∗d(y))∗(D(x)∗y)) = D(x)∗y.

Proposition 3.16. Let D be a generalized (l, r)-derivation of a me-
dial BCH-algebra X. Then, the following conditions hold,

(1) D(a) = D(0) + a, for all a ∈ X,
(2) D(a+ x) = D(a) + x, for all a, x ∈ X,
(3) D(a+ b) = D(a) + b = a+D(b), for all a, b ∈ X.

Proof. (1) Let D be a generalized (l, r)-derivation of a medial BCH-
algebra X. Then we have

D(a) = D(0 ∗ (0 ∗ x)) = (D(0) ∗ (0 ∗ a)) ∧ (0 ∗ d(0 ∗ a)) = D(0) ∗ (0 ∗ a),

which implies D(a) = D(0) + a, for all a ∈ X.
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(2) For all a, x ∈ X, we have

D(a+ x) = D(a ∗ (0 ∗ x)) = (D(a) ∗ (0 ∗ x)) ∧ (a ∗ d(0 ∗ x))

= D(a) ∗ (0 ∗ x) = D(a) + x.

(3) Since (X,+) is an abelian group, we get

D(a) + b = D(a+ b) = D(b+ a) = D(b) + a,

for all a, b ∈ X.

Proposition 3.17. Let D be a generalized (r, l)-derivation of a me-
dial BCH-algebra X. Then, the following conditions hold,

(1) D(a) ∈ G(X), for all a ∈ G(X),
(2) D(a) = a ∗D(0) = a+D(0), for all a ∈ X,
(3) D(a+ b) = D(a) +D(b)−D(0), for all a, b ∈ X,
(4) D is an identity map on X if and only if D(0) = 0.

Proof. (1) For a ∈ G(X), we have

D(a) = D(0 ∗ a) = (0 ∗D(a)) ∧ (d(0) ∗ a) = 0 ∗D(a),

which implies D(a) ∈ G(X).
(2) Now, since D(a) = D(a∗0) = (a∗D(0))∧ (d(a)∗0), for all a ∈ X,

we have

D(a) = a ∗D(0) = a ∗D(0 ∗ 0) = a ∗ (0 ∗D(0)) = a+D(0).

(3) By (2) we get D(a + b) = (a + b) + D(0) and D(b) = b + D(0).
Since (X,+) is an abelian group, we have

D(a+ b) = (a+ b) +D(0) = (a+D(0)) + b

= D(a) + b = D(a) + (D(b)−D(0))

= D(a) +D(b)−D(0).

(4) If D(0) = 0, then we have, for every a ∈ X,
D(a) = D(a ∗ 0) = a ∗D(0) = a ∗ 0 = a,

which implies D is an identity map on X. Conversely, if D is an identity
map on X, then D(a) = a for all a ∈ X, and so D(0) = 0.

Definition 3.18. A BCH-algebra X is said to be Torsion free if it
satisfies

x+ x = 0⇒ x = 0,

for all x ∈ X.

If there exists a nonzero element x ∈ X such that x+ x = 0, then X
is not Torsion free.
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Example 3.19. Let X = {0, a, b, c} be a BCH-algebra with Cayley
table as follows:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b c 0 c
c c 0 0 0

Then X is a Torsion free since 0+0 = 0∗ (0∗0) = 0, a+a = a∗ (0∗a) =
a∗0 = a, b+b = b∗ (0∗b) = b∗0 = b, c+c = c∗ (0∗c) = c∗0 = c. But in
Example 3.2, X is not a Torsion free since 2 + 2 = 2 ∗ (0 ∗ 2) = 2 ∗ 2 = 0.

Theorem 3.20. Let X be a Torsion free BCH-algebra and let D1

and D2 be generalized derivations of X. If D1D2 = 0 on X, then D2 = 0
on X.

Proof. Let x ∈ X. Then x+ x ∈ X, and so we have

0 = (D1D2)(x+ x)

= D1(D2(x+ x))

= D1(0) +D2(x+ x) (since D(a) = D(0) + a)

= D1(0) +D2(x) +D2(x)−D2(0) (by proposition 3.17 (3))

= D1(0)−D2(0) +D2(x) +D2(x)

= (D1(0) ∗D2(0)) +D2(x) +D2(x)

= (D1(0) ∗ (0 ∗D2(0)) +D2(x) +D2(x)

= D1(D2(0)) +D2(x) +D2(x)

= (D1D2(0)) +D2(x) +D2(x)

= 0 +D2(x) +D2(x)

= D2(x) +D2(x).

Since X is Torsion free, we have D2(x) = 0, for all x ∈ X, and so D2 = 0
on X.

In the above theorem, if we replace both the generalized derivations
D1 and D2 by a generalized derivation D itself, we get the following
corollary.

Corollary 3.21. Let X be a Torsion free BCH-algebra and let D
be a generalized derivation. If D2 = 0, then D = 0 on X.
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Proof. Let D2 = 0 on X. Then D2(x) = 0, for all x ∈ X. Now, for
any x ∈ X,

0 = D2(x+ x) = D(D(x+ x)

= D(0) +D(x+ x) ( since D(a) = D(0) + a)

= D(0) +D(x) +D(x)−D(0)

= D(x) +D(x).

Since X is Torsion free, we have D(x) = 0, for all x ∈ X, proving D = 0,
for all x ∈ X.

Let D be a generalized derivation of X. Define a set FixD(X) by

FixD(X) = {x ∈ X | D(x) = x}.

Proposition 3.22. Let D be a generalized derivation of a medial
BCH-algebra X. If x ∈ FixD(X) and for any y ∈ X, then x ∗ y ∈
FixD(x).

Proof. Let x ∈ FixD(X) and y ∈ X. Then D(x) = x, and so we have

D(x ∗ y) = (D(x) ∗ y) ∧ (x ∗ d(x))

= (x ∗ y) ∧ (x ∗ d(y))

= (x ∗ d(y)) ∗ [(x ∗ d(y)) ∗ (x ∗ y)]

= x ∗ y

which implies x ∗ y ∈ FixD(X).

Proposition 3.23. Let D be a generalized derivation of a medial
BCH-algebra X. If x ∈ FixD(X) and y ∈ X, then x ∧ y ∈ FixD(X).

Proof. Let x ∈ FixD(X) and y ∈ X. Then D(x) = x, and so we have

D(x ∧ y) = D(x ∗ (x ∗ y))

= (D(x) ∗ (x ∗ y)) ∧ (x ∗ d(x ∗ y))

= (x ∗ (x ∗ y)) ∧ (x ∗ d(x ∗ y))

= (x ∗ d(x ∗ y)) ∗ [(x ∗ d(x ∗ y)) ∗ (x ∗ (x ∗ y))]

= x ∗ (x ∗ y) = x ∧ y,

which implies x ∧ y ∈ FixD(X).

Proposition 3.24. Let D be a generalized derivation of X. If x ∈
FixD(X), then we have (D ◦D)(x) = x.
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Proof. Let x ∈ FixD(X). Then we have

(D ◦D)(x) = D(D(x)) = D(x) = x.

This completes the proof.

Theorem 3.25. Let D be a generalized derivation of a medial BCH-
algebra of X. If FixD(X) 6= φ, then D is regular.

Proof. Let y ∈ FixD(X). Then we get D(y) = y and

D(0) = D(0 ∧ y)

= D(y ∗ (y ∗ 0))

= (D(y) ∗ (y ∗ 0)) ∧ (y ∗ d(y ∗ 0))

= (y ∗ (y ∗ 0)) ∧ (y ∗ d(y))

= (y ∗ y) ∧ (y ∗ d(y))

= 0 ∧ (y ∗ d(y)) = 0.

Hence D is regular.

Theorem 3.26. Let D be a generalized derivation of a medial BCH-
algebra X. Then FixD(X) is an ideal of X.

Proof. Let X be a medial BCH-algebra and let D be a general-
ized derivation of X. Then by Theorem 3.25, D is regular, and so
0 ∈ FixD(X). Let x ∗ y ∈ FixD(X) and y ∈ FixD(X). Then we
get D(x ∗ y) = x ∗ y and D(y) = y. Thus we have

D(x) = D(x ∧ y) = D(y ∗ (y ∗ x))

= (D(y) ∗ (y ∗ x)) ∧ (y ∗ d(y ∗ x))

= (y ∗ (y ∗ x)) ∧ (y ∗ d(y ∗ x))

= (y ∗ d(y ∗ x)) ∗ [(y ∗ d(y ∗ x)) ∗ (y ∗ (y ∗ x))]

= y ∗ (y ∗ x) = x,

which implies x ∈ FixD(X). This implies that FixD(X) is an ideal of
X.

Theorem 3.27. Let D is a generalized derivation of X and let D is
regular. Then the following identities are equivalent:

(1) D is an isotone generalized derivation of X.
(2) x ≤ y implies D(x ∗ y) = D(x) ∗D(y).

Proof. (1) ⇒ (2). Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 0.
Hence D(x ∗ y) = D(0) = 0 = D(x) ∗D(y) since D(x) ≤ D(y).
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(2) ⇒ (1). Let x ≤ y. Then 0 = D(0) = D(x ∗ y) = D(x) ∗ D(y),
which implies D(x) ≤ D(y).

Let D be a generalized derivation of X. Define a KerD by

KerD = {x | D(x) = 0}
for all x ∈ X.

Proposition 3.28. Let D be a generalized (r, l)-derivation of a me-
dial BCH-algebra X and let D is regular. Then KerD is an ideal of
X.

Proof. Clearly, 0 ∈ KerD. Let x ∗ y ∈ KerD and y ∈ KerD. Then
we have 0 = D(x ∗ y) = (x ∗D(y)) ∧ (d(x) ∗ y) = x ∗D(y) = x ∗ 0 = x,
and so D(x) = D(0) = 0. This implies x ∈ KerD. Hence KerD is an
ideal of X.
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