ON GENERALIZED DERIVATIONS OF BCH-ALGEBRAS

Kyung Ho Kim*

Abstract

The aim of this paper is to introduce the notion of a generalized derivations of BCH -algebras and some related properties are investigated.

1. Introduction

In 1966, Imai and Iseki introduced two classes of abstract algebras, $B C K$-algebra and $B C I$-algebras [6]. It is known that the class of $B C I$ algebras is a generalization of the class of $B C K$-algebras In 1983, Hu and Li [3] introduced the notion of a $B C H$-algebra, which is a generalization of the notions of $B C K$-algebras and $B C I$-algebras. They have studied a few properties of these algebras. In this paper, we introduce the notion of generalized derivations of BCH -algebras and investigate some properties of generalized derivations in a BCH -algebra. Moreover, we introduce the notions of fixed set and kernel set of generalized derivations in a BCH -algebra and obtained some interesting properties in medial BCH algebras. Also, we discuss the relations between ideals in a medial BCH algebras.

2. Preliminary

By a $B C H$-algebra, we mean an algebra $(X, *, 0)$ with a single binary operation "*" that satisfies the following identities for any $x, y, z \in X$:
(BCH1) $x * x=0$,

[^0](BCH2) $x \leq y$ and $y \leq x$ imply $x=y$, where $x \leq y$ if and only if $x * y=0$. $(\mathrm{BCH} 3)(x * y) * z=(x * z) * y$.

In a $B C H$-algebra X, the following identities are true for all $x, y \in X$:

```
(BCH4)}(x*(x*y))*y=0
(BCH5) }x*0=0\mathrm{ implies }x=0\mathrm{ ,
(BCH6) 0*(x*y)=(0*x)*(0*y),
(BCH7) x*0 = x,
(BCH8)}(x*y)*x=0*y
(BCH9)}x*y=0\mathrm{ implies 0*x=0*y,
(BCH10)}x*(x*y)\leqy
```

Definition 2.1. Let I be a nonempty subset of a $B C H$-algebra X. Then I is called an ideal of X if it satisfies:
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.2. A $B C H$-algebra X is said to be medial if it satisfies

$$
(x * y) *(z * w)=(x * z) *(y * w)
$$

for all $x, y, z, w \in X$.
In a medial $B C H$-algebra X, the following identity hold:
(BCH11) $x *(x * y)=y$ for all $x, y \in X$.
Definition 2.3. Let X be a $B C H$-algebra. Then the set $X_{+}=\{x \in$ $X \mid 0 * x=0\}$ is called a $B C A$-part of X.

Definition 2.4. Let X be a $B C H$-algebra. Then the set $G(X)=$ $\{x \in X \mid 0 * x=x\}$.

Definition 2.5. Let X be a $B C H$-algebra. If we define an operation $"+"$, called addition, as $x+y=x *(0 * y)$, for all $x, y \in X$, then $(X,+)$ is an abelian group with identity 0 and the additive inverse $-x=0 * x$, for all $x \in X$.

REmark 2.6. If we have a $B C H$-algebra $(X, *, 0)$, it follows from the above definition that $(X,+)$ is an abelian group with $-y=0 * y$, for all $y \in X$. Then we have $x-y=x * y$, for all $x, y \in X$. On the other hand, if we choose an abelian group $(X,+)$ with an identity 0 and define $x * y=x-y$, we get a $B C H$-algebra $(X, *, 0)$ where $x+y=x *(0 * y)$, for every $x, y \in X$.

For a $B C H$-algebra X, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$. A $B C H$-algebra X is said to be commutative if for all $x, y \in X$,

$$
y *(y * x)=x *(x * y), \quad \text { i.e., } x \wedge y=y \wedge x
$$

3. Generalized derivations of BCH -algebras

In what follows, let X denote a $B C H$-algebra unless otherwise specified.

Definition 3.1. Let X be a $B C H$-algebra. A map $D: X \rightarrow X$ is called a generalized left-right derivation (briefly, generalized (l, r) derivation) of X if there exists a derivation $d: X \rightarrow X$ such that

$$
D(x * y)=(D(x) * y) \wedge(x * d(y))
$$

for every $x, y \in X$. If D satisfies the identity $D(x * y)=(x * D(y)) \wedge$ $(d(x) * y)$, for all $x, y \in X$, then it is said that D is a generalized right-left derivation (briefly, generalized (r, l)-derivation) of X.

Moreover, If D is both a generalized (l, r) and (r, l)-derivation of X, it is said that D is a generalized derivation of X.

Example 3.2. Let $X=\{0,1,2\}$ be a $B C H$-algebra with Cayley table as follows:

$$
\begin{array}{c|lll}
* & 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 2 \\
1 & 1 & 0 & 2 \\
2 & 2 & 2 & 0
\end{array}
$$

Define a self-map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0,1 \\ 2 & \text { if } x=2\end{cases}
$$

Then it is easy to check that d is both (l, r) and (r, l)-derivation of a $B C H$-algebra X. Also, define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}2 & \text { if } x=0,1 \\ 0 & \text { if } x=2\end{cases}
$$

It is easy to verify that D is a generalized derivation of X.
Example 3.3. Let $X=\{0,1,2,3\}$ be a $B C H$-algebra with Cayley table as follows:

$*$	0	1	2	3
0	0	0	2	2
1	1	0	2	2
2	2	2	0	0
3	3	2	1	0

Define a self-map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}2 & \text { if } x=0,1 \\ 0 & \text { if } x=2,3\end{cases}
$$

Then it is easy to check that d is a derivation of a $B C H$-algebra X. Also, define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}0 & \text { if } x=0,1 \\ 2 & \text { if } x=2,3\end{cases}
$$

It is easy to verify that D is a generalized derivation of X.
Definition 3.4. A self-map D of a $B C H$-algebra X is said to be regular if $D(0)=0$.

Example 3.5. A generalized derivation D in Example 3.3 is regular.
Proposition 3.6. Let D be a self-map of a medial $B C H$-algebra X. Then,
(1) If D is a generalized (l, r)-derivation of X, then $D(x)=D(x) \wedge x$, for all $x \in X$,
(2) If D is a generalized (r, l)-derivation of X, then $D(0)=0$ if and only if $D(x)=x \wedge d(x)$, for all $x \in X$.

Proof. (1) Let D be a generalized (r, l)-derivation of X. Then, for all $x, y \in X$,

$$
\begin{aligned}
D(x) & =D(x * 0)=(D(x) * 0) \wedge(x * d(0)) \\
& =D(x) \wedge(x * d(0))=(x * d(0)) *((x * d(0)) * D(x)) \\
& =(x * d(0)) *((x * D(x)) * d(0)) \quad(\text { since }(x * y) * z=(x * z) * y) \\
& =x *(x * D(x)) \quad(\text { since }(x * y) *(t * s)=(x * t) *(y * s)) \\
& =D(x) \wedge x .
\end{aligned}
$$

(2) Let D be a generalized (r, l)-derivation on X such that $D(0)=0$.

Then

$$
\begin{equation*}
D(x * y)=(x * D(y)) \wedge(d(x) * y)) \tag{1}
\end{equation*}
$$

for all $x, y \in X$. Putting $y=0$ in (1), we have $D(x * 0)=(x * D(0)) \wedge$ $(d(x) * 0)$, that is, $D(x)=(x * 0) \wedge d(x)=x \wedge d(x)$, for all $x \in X$. Conversely, if $D(x)=x \wedge d(x)$, then we have

$$
D(0)=0 \wedge d(0)=d(0) *(d(0) * 0)=d(0) * d(0)=0
$$

Proposition 3.7. Let D be a generalized derivation of X. If $D(x) *$ $x=0$ for all $x \in X$, then D is regular.

Proof. Let $D(x) * x=0$ for all $x \in X$. Then we have

$$
\begin{aligned}
D(0) & =D(x * x)=(D(x) * x) \wedge(x * d(x)) \\
& =0 \wedge(x * d(x))=(x * d(x)) *((x * d(x)) * 0) \\
& =(x * d(x)) *(x * d(x))=0
\end{aligned}
$$

Hence D is regular.
Proposition 3.8. Let D be a generalized derivation of X. Then we have for all $x, y \in X$,
(1) $D(x * y) \leq D(x) * y$,
(2) $D(x * D(x))=0$.

Proof. Let D be a generalized derivation of X. Then for all $x, y \in X$,

$$
\begin{align*}
D(x * y) & =(D(x) * y) \wedge(x * d(y)) \tag{1}\\
& =(x * d(x)) *((x * d(x)) *(D(x) * y)) \\
& \leq D(x) * y .
\end{align*}
$$

(2) For any $x \in X$, we have

$$
\begin{aligned}
D(x * D(x)) & =(D(x) * D(x)) \wedge(x * d(D(x))) \\
& =0 \wedge(x * d(D(x)))=0
\end{aligned}
$$

Proposition 3.9. Let D be a generalized (l, r)-derivation of X. If there exists $a \in X$ such that $D(x) * a=0$ for all $x \in X$, then D is regular.

Proof. Let $D(x) * a=0$ for all $x \in X$. Then

$$
\begin{aligned}
0 & =D(x * a) * a=((D(x) * a) \wedge(x * d(a))) * a \\
& =(0 \wedge(x * d(a))) * a \\
& =0 * a,
\end{aligned}
$$

that is, $a \in X_{+}$and so

$$
\begin{aligned}
D(0) & =D(0 * a) \\
& =(D(0) * a) \wedge(0 * d(a)) \\
& =0 \wedge(0 * d(a))=0 .
\end{aligned}
$$

Hence D is regular.
Proposition 3.10. Let D be a generalized (r, l)-derivation of X. If there exists $a \in X$ such that $a * D(x)=0$ for all $x \in X$, then D is regular.

Proof. Let $a * D(x)=0$ for all $x \in X$. Then

$$
\begin{aligned}
0 & =a * D(a * x)=a *((a * D(x)) \wedge(d(a) * x)) \\
& =a *(0 \wedge(d(a) * x)) \\
& =a * 0=a
\end{aligned}
$$

that is, $a \in X_{+}$and so

$$
\begin{aligned}
D(0) & =D(a)=D(a * 0) \\
& =(a * D(0)) \wedge(a * d(0)) \\
& =0 \wedge(a * d(0))=0 .
\end{aligned}
$$

Hence D is regular.
Proposition 3.11. Let D be a generalized left derivation of X and let D is regular. Then $D: X \rightarrow X$ is an identity map if it satisfies $D(x) * y=x * D(y)$ for all $x, y \in X$.

Proof. Since D is regular, we have $D(0)=0$. Let $x * D(y)=D(x) * y$ for all $x, y \in X$. Then $D(x)=D(x) * 0=x * D(0)=x * 0=x$. Thus D is an identity map.

Definition 3.12. Let X be a $B C H$-algebra. A self-map D on X is said to be isotone if $x \leq y$ implies $D(x) \leq D(y)$ for $x, y \in X$.

Proposition 3.13. Let D be a generalized left derivation of X and let D be regular. Then $D(x * y)=D(x) * D(y)$ implies $D(x \wedge y)=$ $D(x) \wedge D(y)$.

Proof. Let $D(x * y)=D(x) * D(y)$ for all $x, y \in X$. Then we have for all $x, y \in X$,

$$
\begin{aligned}
D(x \wedge y) & =D(y *(y * x)) \\
& =D(y) * D(y * x) \\
& =D(y) *[D(y) * D(x)] \\
& =D(x) \wedge D(y)
\end{aligned}
$$

Proposition 3.14. Let D be a generalized derivation of X. If $D(x \wedge$ $y)=D(x) \wedge D(y)$ for all $x, y \in X$, then D is isotone.

Proof. Let $D(x \wedge y)=D(x) \wedge D(y)$ and $x \leq y$ for all $x, y \in X$. Then $x * y=0$. Thus, we have

$$
\begin{aligned}
D(x) & =D(x * 0) \\
& =D(x *(x * y)) \\
& =D(y \wedge x) \\
& =D(y) \wedge D(x) \\
& =D(x) *[D(x) * D(y)] \\
& \leq D(y)
\end{aligned}
$$

Hence we get $D(x) \leq D(y)$, and so D is isotone.
Proposition 3.15. Let D be a generalized derivation of a medial $B C H$-algebra X. Then $D(x * y)=D(x) * y$ for all $x, y \in X$.

Proof. Let $x, y \in X$. Then we have
$D(x * y)=(D(x) * y) \wedge(x * d(y))=(x * d(y)) *((x * d(y)) *(D(x) * y))=D(x) * y$.

Proposition 3.16. Let D be a generalized (l, r)-derivation of a medial BCH-algebra X. Then, the following conditions hold,
(1) $D(a)=D(0)+a$, for all $a \in X$,
(2) $D(a+x)=D(a)+x$, for all $a, x \in X$,
(3) $D(a+b)=D(a)+b=a+D(b)$, for all $a, b \in X$.

Proof. (1) Let D be a generalized (l, r)-derivation of a medial BCH algebra X. Then we have
$D(a)=D(0 *(0 * x))=(D(0) *(0 * a)) \wedge(0 * d(0 * a))=D(0) *(0 * a)$,
which implies $D(a)=D(0)+a$, for all $a \in X$.
(2) For all $a, x \in X$, we have

$$
\begin{aligned}
D(a+x) & =D(a *(0 * x))=(D(a) *(0 * x)) \wedge(a * d(0 * x)) \\
& =D(a) *(0 * x)=D(a)+x
\end{aligned}
$$

(3) Since $(X,+)$ is an abelian group, we get

$$
D(a)+b=D(a+b)=D(b+a)=D(b)+a
$$

for all $a, b \in X$.
Proposition 3.17. Let D be a generalized (r, l)-derivation of a medial $B C H$-algebra X. Then, the following conditions hold,
(1) $D(a) \in G(X)$, for all $a \in G(X)$,
(2) $D(a)=a * D(0)=a+D(0)$, for all $a \in X$,
(3) $D(a+b)=D(a)+D(b)-D(0)$, for all $a, b \in X$,
(4) D is an identity map on X if and only if $D(0)=0$.

Proof. (1) For $a \in G(X)$, we have

$$
D(a)=D(0 * a)=(0 * D(a)) \wedge(d(0) * a)=0 * D(a)
$$

which implies $D(a) \in G(X)$.
(2) Now, since $D(a)=D(a * 0)=(a * D(0)) \wedge(d(a) * 0)$, for all $a \in X$, we have

$$
D(a)=a * D(0)=a * D(0 * 0)=a *(0 * D(0))=a+D(0)
$$

(3) By (2) we get $D(a+b)=(a+b)+D(0)$ and $D(b)=b+D(0)$. Since $(X,+)$ is an abelian group, we have

$$
\begin{aligned}
D(a+b) & =(a+b)+D(0)=(a+D(0))+b \\
& =D(a)+b=D(a)+(D(b)-D(0)) \\
& =D(a)+D(b)-D(0)
\end{aligned}
$$

(4) If $D(0)=0$, then we have, for every $a \in X$,

$$
D(a)=D(a * 0)=a * D(0)=a * 0=a
$$

which implies D is an identity map on X. Conversely, if D is an identity map on X, then $D(a)=a$ for all $a \in X$, and so $D(0)=0$.

Definition 3.18. A $B C H$-algebra X is said to be Torsion free if it satisfies

$$
x+x=0 \Rightarrow x=0
$$

for all $x \in X$.

If there exists a nonzero element $x \in X$ such that $x+x=0$, then X is not Torsion free.

Example 3.19. Let $X=\{0, a, b, c\}$ be a $B C H$-algebra with Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	c	0	c
c	c	0	0	0

Then X is a Torsion free since $0+0=0 *(0 * 0)=0, a+a=a *(0 * a)=$ $a * 0=a, b+b=b *(0 * b)=b * 0=b, c+c=c *(0 * c)=c * 0=c$. But in Example 3.2, X is not a Torsion free since $2+2=2 *(0 * 2)=2 * 2=0$.

Theorem 3.20. Let X be a Torsion free $B C H$-algebra and let D_{1} and D_{2} be generalized derivations of X. If $D_{1} D_{2}=0$ on X, then $D_{2}=0$ on X.

Proof. Let $x \in X$. Then $x+x \in X$, and so we have

$$
\begin{aligned}
0 & =\left(D_{1} D_{2}\right)(x+x) \\
& =D_{1}\left(D_{2}(x+x)\right) \\
& =D_{1}(0)+D_{2}(x+x) \quad(\text { since } D(a)=D(0)+a) \\
& =D_{1}(0)+D_{2}(x)+D_{2}(x)-D_{2}(0) \quad(\text { by proposition } 3.17(3)) \\
& =D_{1}(0)-D_{2}(0)+D_{2}(x)+D_{2}(x) \\
& =\left(D_{1}(0) * D_{2}(0)\right)+D_{2}(x)+D_{2}(x) \\
& =\left(D_{1}(0) *\left(0 * D_{2}(0)\right)+D_{2}(x)+D_{2}(x)\right. \\
& =D_{1}\left(D_{2}(0)\right)+D_{2}(x)+D_{2}(x) \\
& =\left(D_{1} D_{2}(0)\right)+D_{2}(x)+D_{2}(x) \\
& =0+D_{2}(x)+D_{2}(x) \\
& =D_{2}(x)+D_{2}(x)
\end{aligned}
$$

Since X is Torsion free, we have $D_{2}(x)=0$, for all $x \in X$, and so $D_{2}=0$ on X.

In the above theorem, if we replace both the generalized derivations D_{1} and D_{2} by a generalized derivation D itself, we get the following corollary.

Corollary 3.21. Let X be a Torsion free $B C H$-algebra and let D be a generalized derivation. If $D^{2}=0$, then $D=0$ on X.

Proof. Let $D^{2}=0$ on X. Then $D^{2}(x)=0$, for all $x \in X$. Now, for any $x \in X$,

$$
\begin{aligned}
0=D^{2}(x+x) & =D(D(x+x) \\
& =D(0)+D(x+x) \quad(\text { since } D(a)=D(0)+a) \\
& =D(0)+D(x)+D(x)-D(0) \\
& =D(x)+D(x)
\end{aligned}
$$

Since X is Torsion free, we have $D(x)=0$, for all $x \in X$, proving $D=0$, for all $x \in X$.

Let D be a generalized derivation of X. Define a set $F i x_{D}(X)$ by

$$
\operatorname{Fix}_{D}(X)=\{x \in X \mid D(x)=x\} .
$$

Proposition 3.22. Let D be a generalized derivation of a medial $B C H$-algebra X. If $x \in \operatorname{Fix}_{D}(X)$ and for any $y \in X$, then $x * y \in$ Fix $_{D}(x)$.

Proof. Let $x \in F i x_{D}(X)$ and $y \in X$. Then $D(x)=x$, and so we have

$$
\begin{aligned}
D(x * y) & =(D(x) * y) \wedge(x * d(x)) \\
& =(x * y) \wedge(x * d(y)) \\
& =(x * d(y)) *[(x * d(y)) *(x * y)] \\
& =x * y
\end{aligned}
$$

which implies $x * y \in \operatorname{Fix}_{D}(X)$.
Proposition 3.23. Let D be a generalized derivation of a medial $B C H$-algebra X. If $x \in \operatorname{Fix}_{D}(X)$ and $y \in X$, then $x \wedge y \in \operatorname{Fix}_{D}(X)$.

Proof. Let $x \in \operatorname{Fix}_{D}(X)$ and $y \in X$. Then $D(x)=x$, and so we have

$$
\begin{aligned}
D(x \wedge y) & =D(x *(x * y)) \\
& =(D(x) *(x * y)) \wedge(x * d(x * y)) \\
& =(x *(x * y)) \wedge(x * d(x * y)) \\
& =(x * d(x * y)) *[(x * d(x * y)) *(x *(x * y))] \\
& =x *(x * y)=x \wedge y
\end{aligned}
$$

which implies $x \wedge y \in \operatorname{Fix}_{D}(X)$.
Proposition 3.24. Let D be a generalized derivation of X. If $x \in$ $\operatorname{Fix}_{D}(X)$, then we have $(D \circ D)(x)=x$.

Proof. Let $x \in \operatorname{Fix}_{D}(X)$. Then we have

$$
(D \circ D)(x)=D(D(x))=D(x)=x
$$

This completes the proof.
Theorem 3.25. Let D be a generalized derivation of a medial BCH algebra of X. If $\operatorname{Fix}_{D}(X) \neq \phi$, then D is regular.

Proof. Let $y \in \operatorname{Fix}_{D}(X)$. Then we get $D(y)=y$ and

$$
\begin{aligned}
D(0) & =D(0 \wedge y) \\
& =D(y *(y * 0)) \\
& =(D(y) *(y * 0)) \wedge(y * d(y * 0)) \\
& =(y *(y * 0)) \wedge(y * d(y)) \\
& =(y * y) \wedge(y * d(y)) \\
& =0 \wedge(y * d(y))=0 .
\end{aligned}
$$

Hence D is regular.
Theorem 3.26. Let D be a generalized derivation of a medial BCH algebra X. Then Fix $_{D}(X)$ is an ideal of X.

Proof. Let X be a medial $B C H$-algebra and let D be a generalized derivation of X. Then by Theorem $3.25, D$ is regular, and so $0 \in F i x_{D}(X)$. Let $x * y \in \operatorname{Fix}_{D}(X)$ and $y \in \operatorname{Fix}_{D}(X)$. Then we get $D(x * y)=x * y$ and $D(y)=y$. Thus we have

$$
\begin{aligned}
D(x) & =D(x \wedge y)=D(y *(y * x)) \\
& =(D(y) *(y * x)) \wedge(y * d(y * x)) \\
& =(y *(y * x)) \wedge(y * d(y * x)) \\
& =(y * d(y * x)) *[(y * d(y * x)) *(y *(y * x))] \\
& =y *(y * x)=x
\end{aligned}
$$

which implies $x \in F i x_{D}(X)$. This implies that $F i x_{D}(X)$ is an ideal of X.

Theorem 3.27. Let D is a generalized derivation of X and let D is regular. Then the following identities are equivalent:
(1) D is an isotone generalized derivation of X.
(2) $x \leq y$ implies $D(x * y)=D(x) * D(y)$.

Proof. (1) $\Rightarrow(2)$. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$. Hence $D(x * y)=D(0)=0=D(x) * D(y)$ since $D(x) \leq D(y)$.
$(2) \Rightarrow(1)$. Let $x \leq y$. Then $0=D(0)=D(x * y)=D(x) * D(y)$, which implies $D(x) \leq D(y)$.

Let D be a generalized derivation of X. Define a $\operatorname{Ker} D$ by

$$
\operatorname{Ker} D=\{x \mid D(x)=0\}
$$

for all $x \in X$.
Proposition 3.28. Let D be a generalized (r, l)-derivation of a medial BCH-algebra X and let D is regular. Then KerD is an ideal of X.

Proof. Clearly, $0 \in \operatorname{KerD}$. Let $x * y \in \operatorname{KerD}$ and $y \in \operatorname{KerD}$. Then we have $0=D(x * y)=(x * D(y)) \wedge(d(x) * y)=x * D(y)=x * 0=x$, and so $D(x)=D(0)=0$. This implies $x \in \operatorname{Ker} D$. Hence $\operatorname{Ker} D$ is an ideal of X.

References

[1] M. A. Chaudhry, On BCH-algebras, Math. Japonica. 36 (1991), no. 4, 665-676.
[2] M. A. Chaudhry and H. Fakhar-ud-din, Ideals and Filter in BCH-algebras, Math. Japonica. 44 (1996), no. 1, 101-112.
[3] Q. P. Hu and X. Li, On BCH-algebra, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 313-320.
[4] Q. P. Hu and X. Li, On proper BCH-algebra, Math. Japon. 30 (1985), no. 4, 659-661.
[5] K. Iseki, An algebra related with a propositional calculus, Proc. Japon Acad 42 (1966), 26-29.
[6] Y. Imai and K. Iseki, On axiom system of propositional calculi XIV , Proc. Japan Academy 42 (1966), 19-22.
*
Department of Mathematics
Korea National University of Transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received November 13, 2015; Accepted January 15, 2016.
 2010 Mathematics Subject Classification: Primary 03G25, 06B10, 06D99, 06B35, 06B99.

 Key words and phrases: $B C H$-algebra, derivation, generalized derivation, regular, isotone, Torsion free, fixed set.

 This was supported by Korea National University of Transportation in 2015.

