DOI QR코드

DOI QR Code

Preparation and Characterizations of Ionomer-coated Pore-filled Ion-exchange Membranes for Reverse Electrodialysis

역전기투석 응용을 위한 이오노머가 코팅된 세공충진 이온교환막의 제조 및 특성분석

  • Kim, Do-Hyeong (Department of Environmental Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
  • Received : 2016.01.13
  • Accepted : 2016.02.19
  • Published : 2016.02.29

Abstract

In this study, we have prepared engineering polymer-based ionomers and pore-filled ion-exchange membranes (PFIEMs) employing a porous polyethylene substrate and combined them to fabricate the ionomer-PFIEM composite membranes for the reverse electrodialysis (RED) application. Both the electrochemical properties comparable to those of the commercial ion-exchange membranes (AMX/CMX, Astom Corp., Japan) and the physical stability adaptable to the practical uses have been achieved by integrating the ionomers having a high ion conductivity and the PFIEMs with an excellent mechanical strength. The RED performances have been evaluated by employing the prepared ionomer-PFIEM composite membranes and therefore excellent power generation performances were shown as the levels of 86.4% and 104.8% for the anion-exchange membrane and cation-exchange membrane, respectively, compared with those of the commercial membranes.

본 연구에서는 역전기투석 응용을 위해 엔지니어링 고분자 기반의 이오노머와 다공성 폴리에틸렌 지지체를 사용한 세공충진 이온교환막을 제조하고 이를 결합한 이오노머-세공충진 복합막을 제조하였다. 이온전도도가 높은 이오노머와 우수한 기계적 강도를 가진 세공충진막을 결합함으로써 상용 이온교환막(AMX/CMX, Astom Corp., Japan) 대비 동등 수준의 전기화학적 특성 및 응용에 적합한 물리적 안정성을 확보할 수 있었다. 제조된 이오노머-세공충진 복합막을 이용하여 역전기투석 성능을 평가한 결과 상용막 대비 음이온 교환막의 경우 86.4%, 양이온 교환막은 104.8% 수준의 우수한 발전성능을 나타내었다.

Keywords

References

  1. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  2. G. L. Wick, "Power from salinity gradients", Energy, 3, 95 (1978). https://doi.org/10.1016/0360-5442(78)90059-2
  3. J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system", Environ. Sci. Technol. Lett., 42, 5785 (2008). https://doi.org/10.1021/es8004317
  4. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  5. H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam (2004).
  6. J. N. Weinstein and F. B. Leitz, "Electric power from differences in salinity: the dialytic battery", Science, 191, 557 (1976). https://doi.org/10.1126/science.191.4227.557
  7. E. Brauns, "Towards a worldwide sustainable and simultaneous large scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power", Desalination, 219, 312 (2008). https://doi.org/10.1016/j.desal.2007.04.056
  8. E. Brauns, "Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output", Desalination, 237, 378 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  9. J. Jagur-Grodzinski and R. Kramer, "Novel process for direct conversion of free energy of mixing into electric power", Ind. Eng. Chem. Process Des. Dev., 25, 443 (1986). https://doi.org/10.1021/i200033a016
  10. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007). https://doi.org/10.1016/j.memsci.2006.11.018
  11. G. Lagger, H. Jensen, J. Josserand, and H. H. Girault, "Hydro-voltaic cells: Part 1. Concentration cells", J. Electroanal. Chem., 545, 1 (2003). https://doi.org/10.1016/S0022-0728(03)00116-5
  12. M. Turek and B. Bandura, "Renewable energy by reverse electrodialysis", Desalination, 205, 67 (2007). https://doi.org/10.1016/j.desal.2006.04.041
  13. F. Suda, T. Matsuo, and D. Ushioda, "Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water", Energy, 32, 165 (2007). https://doi.org/10.1016/j.energy.2006.04.005
  14. X. Tongwen and Y. Weihua, "Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization", J. Membr. Sci., 190, 159 (2001). https://doi.org/10.1016/S0376-7388(01)00434-3
  15. P. Xing, G. P. Robertson, M. D. Guiver, S. D Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes", J. Membr. Sci., 229, 95 (2004). https://doi.org/10.1016/j.memsci.2003.09.019
  16. R. K. Nagarale, G. S. Gohil, V. K. Shahi, and R. Rangarajan, "Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups", Colloid Surf. A-Physicochem. Eng. Asp., 251, 133 (2004). https://doi.org/10.1016/j.colsurfa.2004.09.028
  17. P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer, and M. Wessling, "Transport limitations in ion exchange membranes at low salt concentrations", J. Membr. Sci., 346, 163 (2010). https://doi.org/10.1016/j.memsci.2009.09.033
  18. P. Dlugolecki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, "On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport", J. Membr. Sci., 349, 369 (2010). https://doi.org/10.1016/j.memsci.2009.11.069
  19. P. Dlugolecki, A. Gambier, K. Nijmeijer, and M. Wessling, "Practical potential of reverse electrodialysis as process for sustainable energy generation", Environ. Sci. Technol., 43, 6888 (2009). https://doi.org/10.1021/es9009635
  20. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  21. E. Guler, R. Elizen, D. A. Vermaas M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  22. A. Daniilidis, R. Herber, and D. A. Vermaas, "Upscale potential and financial feasibility of a reverse electrodialysis power plant", Appl. Energy, 119, 257 (2014). https://doi.org/10.1016/j.apenergy.2013.12.066
  23. J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system", Environ. Sci. Technol., 42, 5785 (2008). https://doi.org/10.1021/es8004317
  24. Y. Tanaka, "Ion-exchange membrane electrodialysis for saline water desalination and its application to seawater concentration", Ind. Eng. Chem. Res., 50, 7494 (2011). https://doi.org/10.1021/ie102386d
  25. J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014). https://doi.org/10.1016/j.memsci.2014.02.027
  26. D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, "Influence of multivalent ions on renewable energy generation in reverse electrodialysis", Energy Environ. Sci., 7, 1434 (2014). https://doi.org/10.1039/C3EE43501F
  27. E. Choi, K. Kwon, D. Kim, and J. Park, "Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network", Lap Chip, 15, 168 (2015).
  28. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y.-S. Kang, J,-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013). https://doi.org/10.1016/j.memsci.2013.07.017
  29. M.-S. Kang, "Development of pore-filled ion-exchange membrane for efficient all vanadium redox flow batteries", J. Korean Electrochem. Soc., 16, 204 (2013). https://doi.org/10.5229/JKES.2013.16.4.204
  30. D.-H. Kim, H.-S. Park, S.-J. Sea, J.-S. Park, S.-H. Moon, Y.-W. Choi, Y. S. Jiong, D. H. Kim, and M.-S. Kang, "Facile surface modification of anion-exchange membranes for improvement of diffusion dialysis performance", J. Colloid Interface Sci., 416, 19 (2014). https://doi.org/10.1016/j.jcis.2013.10.013
  31. E. Bakangura, L. Ge, M. Muhammad, J. Pan, L. Wu, and X. Tongwen, "Sandwich structure SPPO/BPPO proton exchange membranes for fuel cells: morphology-electrochemical properties relationship", J. Membr. Sci., 475, 30 (2015). https://doi.org/10.1016/j.memsci.2014.09.039
  32. E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 254 (2014). https://doi.org/10.1016/j.memsci.2013.12.054
  33. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  34. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, "Effect of immobilized bipolar interface formed by multivalent and large molecular ions on electrodialytic water splitting at cation-exchange membrane surface", Membr. J., 13, 143 (2003).
  35. Y.-J. Choi, M.-S. Kang, J. Cho, and S.-H. Moon, "Preparation and characterization of LDPE/polyvinylbenzyl trimethyl ammonium salts anion-exchange membrane", J. Membr. Sci., 221, 219 (2003). https://doi.org/10.1016/S0376-7388(03)00265-5
  36. D.-H. Kim and M.-S. Kang, "Improvement of capacitive deionization performance by coating quaternized poly(phenylene oxide)", Membr. J., 24, 332 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.332
  37. Y.-J. Choi, M.-S. Kang, and S.-H. Moon, "Characterization of semi-interpenetrating polymer network polystyrene cation-exchange membranes", J. Appl. Polym. Sci., 88, 1488 (2003). https://doi.org/10.1002/app.11860