Novel Pharmacological Treatment for Depression

새로운 우울증 치료 약물

  • Jeong, Hee Jeong (Department of Psychiatry, Pusan National University Hospital) ;
  • Moon, Eunsoo (Department of Psychiatry, Pusan National University Hospital)
  • 정희정 (부산대학교병원 정신건강의학과) ;
  • 문은수 (부산대학교병원 정신건강의학과)
  • Received : 2016.01.20
  • Accepted : 2016.02.01
  • Published : 2016.02.29

Abstract

Development of various antidepressants such as monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and noradrenergic and specific serotonergic antidepressant has led to a tremendous progression of pharmaceutical treatment for depression, but still there are some limitations of current antidepressants, such as treatment-resistant depression and delayed onset of antidepressants. The pathogenesis of depression is unclear because depression is a heterogeneous disease state, and the mechanisms of antidepressants remain uncertain as well. Nevertheless, in an attempt to develop novel antidepressants, some trials have been conducted based on the potential biological mechanism discovered in the numerous research results. This review will provide information about the potential novel antidepressants and the current states of clinical studies using them. In particular, some potential novel antidepressants anti-inflammatory agents, antioxidants, anticholinergics, modulators of Hypothalamic Pituitary Adrenal Axis, glutamate, and opioid systems, as well as some neuropeptides such as susbstance P, neuropeptide Y, and galanin will be discussed.

Keywords

References

  1. Lopez-Munoz F, Alamo C, Juckel G, Assion HJ. Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. J Clin Psychopharmacol 2007;27:555-559. https://doi.org/10.1097/jcp.0b013e3181bb617
  2. Weilburg JB. An overview of SSRI and SNRI therapies for depression. Manag Care 2004;13(6 Suppl Depression):25-33.
  3. Benjamin S, Doraiswamy PM. Review of the use of mirtazapine in the treatment of depression. Expert Opin Pharmacother 2011;12:1623-1632. https://doi.org/10.1517/14656566.2011.585459
  4. Fava M. Augmentation and combination strategies in treatment-resistant depression. J Clin Psychiatry 2001;62 Suppl 18:4-11.
  5. Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 2003;53:649-659. https://doi.org/10.1016/S0006-3223(03)00231-2
  6. Nierenberg AA, Katz J, Fava M. A critical overview of the pharmacologic management of treatment-resistant depression. Psychiatr Clin North Am 2007;30:13-29. https://doi.org/10.1016/j.psc.2007.01.001
  7. Nelson JC. Optimizing outcomes in major depressive disorder via augmentation therapy--focus on the role of atypical antipsychotics. Foreword. CNS Drugs 2013;27 Suppl 1:S3-S4. https://doi.org/10.1007/s40263-012-0027-9
  8. Uher R, Mors O, Rietschel M, Rajewska-Rager A, Petrovic A, Zobel A, et al. Early and delayed onset of response to antidepressants in individual trajectories of change during treatment of major depression: a secondary analysis of data from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. J Clin Psychiatry 2011; 72:1478-1484. https://doi.org/10.4088/JCP.10m06419
  9. Mrazek DA, Hornberger JC, Altar CA, Degtiar I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996-2013. Psychiatr Serv 2014;65:977-987. https://doi.org/10.1176/appi.ps.201300059
  10. Pearce EF, Murphy JA. Vortioxetine for the treatment of depression. Ann Pharmacother 2014;48:758-765. https://doi.org/10.1177/1060028014528305
  11. Smeraldi E, Delmonte D. Agomelatine in depression. Expert Opin Drug Saf 2013;12:873-880. https://doi.org/10.1517/14740338.2013.828690
  12. Guaiana G, Gupta S, Chiodo D, Davies SJ, Haederle K, Koesters M. Agomelatine versus other antidepressive agents for major depression. Cochrane Database Syst Rev 2013;12:CD008851.
  13. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 2015;23:1-21. https://doi.org/10.1037/a0038550
  14. Papakostas GI, Ionescu DF. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 2015;20:1142-1150. https://doi.org/10.1038/mp.2015.92
  15. Rosenblat JD, McIntyre RS, Alves GS, Fountoulakis KN, Carvalho AF. Beyond monoamines-novel targets for treatment-resistant depression: a comprehensive review. Curr Neuropharmacol 2015;13: 636-655. https://doi.org/10.2174/1570159X13666150630175044
  16. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014;53:23-34. https://doi.org/10.1016/j.pnpbp.2014.01.013
  17. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry 2003;54:906-914. https://doi.org/10.1016/S0006-3223(03)00173-2
  18. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 2002;7:468-473. https://doi.org/10.1038/sj.mp.4000995
  19. Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012;33:191-206. https://doi.org/10.1016/j.neuro.2012.01.012
  20. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 2013;30:297-306. https://doi.org/10.1002/da.22084
  21. Hashimoto K, Malchow B, Falkai P, Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013;263:367-377. https://doi.org/10.1007/s00406-013-0399-y
  22. Sigalas PD, Garg H, Watson S, McAllister-Williams RH, Ferrier IN. Metyrapone in treatment-resistant depression. Ther Adv Psychopharmacol 2012;2:139-149. https://doi.org/10.1177/2045125312436597
  23. Cowen PJ. Not fade away: the HPA axis and depression. Psychol Med 2010;40:1-4.
  24. Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O'Neil A, et al. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 2013;11:74. https://doi.org/10.1186/1741-7015-11-74
  25. Faridhosseini F, Sadeghi R, Farid L, Pourgholami M. Celecoxib: a new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum Psychopharmacol 2014;29:216-223. https://doi.org/10.1002/hup.2401
  26. Na KS, Lee KJ, Lee JS, Cho YS, Jung HY. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a metaanalysis. Prog Neuropsychopharmacol Biol Psychiatry 2014;48:79-85. https://doi.org/10.1016/j.pnpbp.2013.09.006
  27. Ekdahl CT. Microglial activation-tuning and pruning adult neurogenesis. Front Pharmacol 2012;3:41.
  28. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70:31-41. https://doi.org/10.1001/2013.jamapsychiatry.4
  29. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 2008;79:101-108. https://doi.org/10.1016/j.plefa.2008.09.016
  30. Gertsik L, Poland RE, Bresee C, Rapaport MH. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J Clin Psychopharmacol 2012;32:61-64. https://doi.org/10.1097/JCP.0b013e31823f3b5f
  31. Jazayeri S, Tehrani-Doost M, Keshavarz SA, Hosseini M, Djazayery A, Amini H, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry 2008; 42:192-198. https://doi.org/10.1080/00048670701827275
  32. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyleicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 2002;59:913-919. https://doi.org/10.1001/archpsyc.59.10.913
  33. Seo HJ, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, et al. Curcumin as a putative antidepressant. Expert Rev Neurother 2015;15: 269-280. https://doi.org/10.1586/14737175.2015.1008457
  34. Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012;26:1512-1524. https://doi.org/10.1177/0269881112458732
  35. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, doubleblind, placebo controlled study. J Affect Disord 2014;167:368-375. https://doi.org/10.1016/j.jad.2014.06.001
  36. Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 2011;68: 769-775.
  37. Bergman J, Miodownik C, Bersudsky Y, Sokolik S, Lerner PP, Kreinin A, et al. Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 2013;36:73-77. https://doi.org/10.1097/WNF.0b013e31828ef969
  38. Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, et al. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res 2014;28:579-585. https://doi.org/10.1002/ptr.5025
  39. Levine J, Cholestoy A, Zimmerman J. Possible antidepressant effect of minocycline. Am J Psychiatry 1996;153:582.
  40. Mello BS, Monte AS, McIntyre RS, Soczynska JK, Custodio CS, Cordeiro RC, et al. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J Psychiatr Res 2013;47:1521-1529. https://doi.org/10.1016/j.jpsychires.2013.06.008
  41. Savitz J, Preskorn S, Teague TK, Drevets D, Yates W, Drevets W. Minocycline and aspirin in the treatment of bipolar depression: a protocol for a proof-of-concept, randomised, double-blind, placebocontrolled, 2x2 clinical trial. BMJ Open 2012;2:e000643. https://doi.org/10.1136/bmjopen-2011-000643
  42. ClinicalTrials.gov [homepage on the Internet]. Open Study Assessing the Feasibility of Minocycline in Patients With Unipolar Depression [updated 2012 Jul 3; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01574742.
  43. ClinicalTrials.gov [homepage on the Internet]. Minocycline and Aspirin in the Treatment of Bipolar Depression (Minocycline) [updated 2015 Oct 28; cited 2011 Mar 28]. Available from: http://clinicaltrials.gov/ct2/show/NCT01429272.
  44. ClinicalTrials.gov [homepage on the Internet]. Minocycline for Bipolar Depression [updated 2015 Aug 4; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01514422.
  45. ClinicalTrials.gov [homepage on the Internet]. Evaluating the Efficacy of Adjunctive Minocycline for the Treatment of Bipolar Depression [updated 2015 Jul 25; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01403662.
  46. Rawdin BJ, Mellon SH, Dhabhar FS, Epel ES, Puterman E, Su Y, et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun 2013;31:143-152. https://doi.org/10.1016/j.bbi.2012.11.011
  47. Anderson G, Berk M, Dean O, Moylan S, Maes M. Role of immuneinflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 2014;28:1-10. https://doi.org/10.1007/s40263-013-0119-1
  48. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003;66:1499-1503. https://doi.org/10.1016/S0006-2952(03)00504-5
  49. Aboul-Fotouh S. Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 2013; 104:105-112. https://doi.org/10.1016/j.pbb.2012.12.027
  50. Morris G, Anderson G, Berk M, Maes M. Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013;48:883-903. https://doi.org/10.1007/s12035-013-8477-8
  51. Acuna-Castroviejo D, Martin M, Macias M, Escames G, Leon J, Khaldy H, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001;30:65-74. https://doi.org/10.1034/j.1600-079X.2001.300201.x
  52. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2013;46:224-235. https://doi.org/10.1016/j.pnpbp.2012.09.008
  53. Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013;34:167-177. https://doi.org/10.1016/j.tips.2013.01.001
  54. Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, et al. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 2014;7:628-636.
  55. Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, et al. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012;235:302-317. https://doi.org/10.1016/j.bbr.2012.07.026
  56. Janowsky DS, Risch C, Parker D, Huey L, Judd L. Increased vulnerability to cholinergic stimulation in affective-disorder patients [proceedings]. Psychopharmacol Bull 1980;16:29-31.
  57. Dilsaver SC. Pharmacologic induction of cholinergic system up-regulation and supersensitivity in affective disorders research. J Clin Psychopharmacol 1986;6:65-74.
  58. Rami A, Krieglstein J. Muscarinic-receptor antagonist scopolamine rescues hippocampal neurons from death induced by glutamate. Brain Res 1998;788:323-326. https://doi.org/10.1016/S0006-8993(98)00041-9
  59. Drevets WC, Zarate CA Jr, Furey ML. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry 2013;73:1156-1163. https://doi.org/10.1016/j.biopsych.2012.09.031
  60. Kasper S, Moises HW, Beckmann H. The anticholinergic biperiden in depressive disorders. Pharmacopsychiatria 1981;14:195-198. https://doi.org/10.1055/s-2007-1019597
  61. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006;63:1121-1129. https://doi.org/10.1001/archpsyc.63.10.1121
  62. Drevets WC, Furey ML. Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebocontrolled clinical trial. Biol Psychiatry 2010;67:432-438. https://doi.org/10.1016/j.biopsych.2009.11.021
  63. Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, et al. Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2012;73:1428-1433. https://doi.org/10.4088/JCP.12m07706
  64. ClinicalTrials.gov [homepage on the Internet]. Ketamine and Scopolamine Infusions for Treatment-resistant Major Depressive Disorder [updated 2015 Jan 26; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01613820.
  65. Philip NS, Carpenter LL, Tyrka AR, Price LH. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl) 2010;212:1-12. https://doi.org/10.1007/s00213-010-1932-6
  66. George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol 2008;28:340-344. https://doi.org/10.1097/JCP.0b013e318172b49e
  67. Philip NS, Carpenter LL, Tyrka AR, Whiteley LB, Price LH. Varenicline augmentation in depressed smokers: an 8-week, open-label study. J Clin Psychiatry 2009;70:1026-1031. https://doi.org/10.4088/JCP.08m04441
  68. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med 1998;28:573-584. https://doi.org/10.1017/S0033291798006680
  69. Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedemann K. Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch Gen Psychiatry 2004;61:1235-1244. https://doi.org/10.1001/archpsyc.61.12.1235
  70. ClinicalTrials.gov [homepage on the Internet]. Antiglucocorticoid Augmentation of antiDepressants in Depression (ADD) [updated 2014 Jul 16; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01375920.
  71. Cardoso C, Kingdon D, Ellenbogen MA. A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: moderation by method and mental health. Psychoneuroendocrinology 2014;49:161-170. https://doi.org/10.1016/j.psyneuen.2014.07.014
  72. ClinicalTrials.gov [homepage on the Internet]. Oxytocin and Tibolone Adjuncts in Treatment Resistant Depression-A Pilot Study [updated 2012 Jan 15; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01239888.
  73. Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 2009;61:105-123. https://doi.org/10.1016/j.brainresrev.2009.05.005
  74. Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1558-1568. https://doi.org/10.1016/j.pnpbp.2010.06.013
  75. Abelaira HM, Reus GZ, Neotti MV, Quevedo J. The role of mTOR in depression and antidepressant responses. Life Sci 2014;101:10-14. https://doi.org/10.1016/j.lfs.2014.02.014
  76. McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 2015;45:693-704. https://doi.org/10.1017/S0033291714001603
  77. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856-864. https://doi.org/10.1001/archpsyc.63.8.856
  78. ClinicalTrials.gov [homepage on the Internet]. Double-Blind, Placebo-Controlled Trial of Ketamine Therapy in Treatment-Resistant Depression (TRD) [updated 2015 Aug 18; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01920555.
  79. ClinicalTrials.gov [homepage on the Internet]. Intranasal Ketamine in Treatment-Resistant Depression [updated 2014 Nov 17; cited 2011 Mar 28]. Available from: http://clinicaltrials.gov/ct2/show/NCT01304147.
  80. ClinicalTrials.gov [homepage on the Internet]. Treatment Resistant Depression (Pilot) [updated 2015 Nov 17; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01179009.
  81. ClinicalTrials.gov [homepage on the Internet]. Optimization of IV Ketamine for Treatment Resistant Depression [updated 2013 Dec 27; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT00768430.
  82. ClinicalTrials.gov [homepage on the Internet]. Action of Ketamine in Treatment-Resistant Depression [updated 2014 May 6; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01-945047.
  83. ClinicalTrials.gov [homepage on the Internet]. A Study of Ketamine in Patients With Treatment-resistant Depression [updated 2015 Feb 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/ NCT01627782.
  84. ClinicalTrials.gov [homepage on the Internet]. Ketamine Infusion for Treatment-resistant Major Depressive Disorder [updated 2015 Apr 6; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01582945.
  85. Owen RT. Glutamatergic approaches in major depressive disorder: focus on ketamine, memantine and riluzole. Drugs Today (Barc) 2012;48:469-478.
  86. Zarate CA Jr, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 2004;161:171-174. https://doi.org/10.1176/appi.ajp.161.1.171
  87. Sanacora G, Kendell SF, Levin Y, Simen AA, Fenton LR, Coric V, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry 2007; 61:822-825. https://doi.org/10.1016/j.biopsych.2006.08.037
  88. ClinicalTrials.gov [homepage on the Internet]. Efficacy and Tolerability of Riluzole in Treatment Resistant Depression [updated 2015 Feb 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01204918.
  89. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28:631-637. https://doi.org/10.1097/JCP.0b013e31818a6cea
  90. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, et al. A randomized trial of a low-trapping nonselective Nmethyl-D-aspartate channel blocker in major depression. Biol Psychiatry 2013;74:257-264. https://doi.org/10.1016/j.biopsych.2012.10.019
  91. ClinicalTrials.gov [homepage on the Internet]. D-cycloserine for Major Depressive Disorder [updated 2012 Aug 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT00408031.
  92. ClinicalTrials.gov [homepage on the Internet]. Safety and Efficacy of EVT 101 in Treatment-Resistant Depression [updated 2016 Jan 4; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01128452?term=NCT01128452.&rank=1.
  93. ClinicalTrials.gov [homepage on the Internet]. Single IV Dose of GLYX-13 in Patients With Treatment-Resistant Depression [updated 2012 Sep 10; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01234558.
  94. Nations KR, Bursi R, Dogterom P, Ereshefsky L, Gertsik L, Mant T, et al. Maximum tolerated dose evaluation of the AMPA modulator Org 26576 in healthy volunteers and depressed patients: a summary and method analysis of bridging research in support of phase II dose selection. Drugs R D 2012;12:127-139. https://doi.org/10.2165/11634360-000000000-00000
  95. Tokita K, Yamaji T, Hashimoto K. Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 2012;100:688-704. https://doi.org/10.1016/j.pbb.2011.04.016
  96. ClinicalTrials.gov [homepage on the Internet]. MARIGOLD Study: A Study of RO4917523 Versus Placebo as Adjunctive Therapy in Patients With Major Depressive Disorder and an Inadequate Response to Ongoing Antidepressant Therapy [updated 2016 Feb 1; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT-01437657.
  97. Berrocoso E, Sanchez-Blazquez P, Garzon J, Mico JA. Opiates as antidepressants. Curr Pharm Des 2009;15:1612-1622. https://doi.org/10.2174/138161209788168100
  98. Tenore PL. Psychotherapeutic benefits of opioid agonist therapy. J Addict Dis 2008;27:49-65.
  99. Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci 2013;36:195-206. https://doi.org/10.1016/j.tins.2012.11.002
  100. Torregrossa MM, Isgor C, Folk JE, Rice KC, Watson SJ, Woods JH. The delta-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology 2004;29:649-659. https://doi.org/10.1038/sj.npp.1300345
  101. Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH. Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Res 2006;1069:172-181. https://doi.org/10.1016/j.brainres.2005.11.005
  102. Zhang H, Shi YG, Woods JH, Watson SJ, Ko MC. Central kappaopioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: behavioral and BDNF mRNA expression studies. Eur J Pharmacol 2007;570:89-96. https://doi.org/10.1016/j.ejphar.2007.05.045
  103. Gerra G, Borella F, Zaimovic A, Moi G, Bussandri M, Bubici C, et al. Buprenorphine versus methadone for opioid dependence: predictor variables for treatment outcome. Drug Alcohol Depend 2004;75:37-45. https://doi.org/10.1016/j.drugalcdep.2003.11.017
  104. Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 1995;15: 49-57. https://doi.org/10.1097/00004714-199502000-00008
  105. Karp JF, Butters MA, Begley AE, Miller MD, Lenze EJ, Blumberger DM, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry 2014;75:e785-e793. https://doi.org/10.4088/JCP.13m08725
  106. ClinicalTrials.gov [homepage on the Internet]. Buprenorphine for Treatment Resistant Depression (BUP-TRD) [updated 2014 Jan 17; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01407575?term=NCT01407575&rank=1.
  107. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003;24:580-588. https://doi.org/10.1016/j.tips.2003.09.011
  108. Rosenkranz MA. Substance P at the nexus of mind and body in chronic inflammation and affective disorders. Psychol Bull 2007; 133:1007-1037. https://doi.org/10.1037/0033-2909.133.6.1007
  109. Blier P, Gobbi G, Haddjeri N, Santarelli L, Mathew G, Hen R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response. J Psychiatry Neurosci 2004;29:208-218.
  110. Rupniak NM. Elucidating the antidepressant actions of substance P (NK1 receptor) antagonists. Curr Opin Investig Drugs 2002;3:257-261.
  111. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998;281:1640-1645. https://doi.org/10.1126/science.281.5383.1640
  112. Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 2004;29:385-392. https://doi.org/10.1038/sj.npp.1300260
  113. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, et al. Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006;59:216-223. https://doi.org/10.1016/j.biopsych.2005.07.013
  114. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998; 50:143-150.
  115. Jolicoeur FB, Bouali SM, Fournier A, St-Pierre S. Mapping of hypothalamic sites involved in the effects of NPY on body temperature and food intake. Brain Res Bull 1995;36:125-129. https://doi.org/10.1016/0361-9230(94)00176-2
  116. Antonijevic IA, Murck H, Bohlhalter S, Frieboes RM, Holsboer F, Steiger A. Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology 2000;39:1474- 1481. https://doi.org/10.1016/S0028-3908(00)00057-5
  117. Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF, et al. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology 1993;8:357-363. https://doi.org/10.1038/npp.1993.35
  118. Redrobe JP, Dumont Y, Fournier A, Quirion R. The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 2002;26:615-624. https://doi.org/10.1016/S0893-133X(01)00403-1
  119. Sajdyk TJ, Schober DA, Smiley DL, Gehlert DR. Neuropeptide Y-Y2 receptors mediate anxiety in the amygdala. Pharmacol Biochem Behav 2002;71:419-423. https://doi.org/10.1016/S0091-3057(01)00679-7
  120. Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999;22:25-30. https://doi.org/10.1016/S0166-2236(98)01284-3
  121. Stogner KA, Holmes PV. Neuropeptide-Y exerts antidepressantlike effects in the forced swim test in rats. Eur J Pharmacol 2000; 387:R9-R10. https://doi.org/10.1016/S0014-2999(99)00800-6
  122. Antunes MS, Ruff JR, de Oliveira Espinosa D, Piegas MB, de Brito ML, Rocha KA, et al. Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice. Horm Behav 2015;73:56-63. https://doi.org/10.1016/j.yhbeh.2015.05.018
  123. Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 2014;24:142-147. https://doi.org/10.1016/j.euroneuro.2013.11.007
  124. ClinicalTrials.gov [homepage on the Internet]. Intranasal Administration of Neuropeptide Y in Healthy Male Volunteers (NPY) [updated 2012 Dec 10; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT00748956?term=NCT00748956.&rank=1.
  125. ClinicalTrials.gov [homepage on the Internet]. A Dose Escalation Study of Intranasal Neuropeptide Y in Post Traumatic Stress Disorder (PTSD) [updated 2015 Sep 21; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01533519?term=NCT 01533519.&rank=1.
  126. Lu X, Sharkey L, Bartfai T. The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurol Disord Drug Targets 2007; 6:183-192. https://doi.org/10.2174/187152707780619335
  127. Wrenn CC, Crawley JN. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 2001;25:283-299. https://doi.org/10.1016/S0278-5846(00)00156-1
  128. Kuteeva E, Hokfelt T, Wardi T, Ogren SO. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci 2008; 65:1854-1863. https://doi.org/10.1007/s00018-008-8160-9
  129. Kuteeva E, Wardi T, Hokfelt T, Ogren SO. Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. Eur Neuropsychopharmacol 2007;17:64-69. https://doi.org/10.1016/j.euroneuro.2006.03.003
  130. Kuteeva E, Wardi T, Lundstrom L, Sollenberg U, Langel U, Hokfelt T, et al. Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology 2008;33:2573-2585. https://doi.org/10.1038/sj.npp.1301660
  131. Swanson CJ, Blackburn TP, Zhang X, Zheng K, Xu ZQ, Hokfelt T, et al. Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci U S A 2005;102:17489-1794. https://doi.org/10.1073/pnas.0508970102
  132. Lu X, Barr AM, Kinney JW, Sanna P, Conti B, Behrens MM, et al. A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci U S A 2005;102:874-879. https://doi.org/10.1073/pnas.0408891102