DOI QR코드

DOI QR Code

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio (Automation Group, Department of Electrical Engineering, University of Santiago of Chile) ;
  • Kern, John (Automation Group, Department of Electrical Engineering, University of Santiago of Chile)
  • Received : 2014.04.22
  • Accepted : 2015.09.01
  • Published : 2016.01.01

Abstract

Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

Keywords

References

  1. V. D. Hunt, Industrial Robotics Handbook, 1.a ed. Industrial Press Inc., 1983.
  2. M. Kaufman, Mars Landing 2012: Inside the NASA Curiosity Mission. National Geographic Society, 2012.
  3. J. M. Angulo and R. Avilés, Curso de Robótica. Madrid, España: Paraninfo, 1989.
  4. J. M. Selig, Introductory Robotics. London: Prentice Hall, 1992.
  5. R. Iñigo and E. Vidal, Robots industriales manipuladores. México: Alfaomega, 2004.
  6. F. Torres, J. Pomares, P. Gil, S. Puente, and R. Aracil, Robots y Sistemas Sensoriales, 2.a ed. Madrid: Pearson Educación, 2002.
  7. J. J. Craig, Robótica, 3.a ed. México: Pearson Educación, 2006.
  8. J. Zhou, X. Wu, and Z. Liu, «Distributed coordinated adaptive tracking in networked redundant robotic systems with a dynamic leader», Sci. China Technol. Sci., pp. 1-9, 2014.
  9. F. Rubio, F. J. Abu-Dakka, F. Valero, and V. Mata, «Comparing the efficiency of five algorithms applied to path planning for industrial robots», Industrial Robot: An International Journal, vol. 39, n.° 6, pp. 580-591, oct. 2012. https://doi.org/10.1108/01439911211268787
  10. J. Rubio, J. Serrano, M. Figueroa, and C. F. Aguilar-Ibañez, «Dynamic model with sensor and actuator for an articulated robotic arm», Neural Comput & Applic, vol. 24, n.° 3-4, pp. 573-581, mar. 2014. https://doi.org/10.1007/s00521-012-1259-9
  11. A. Ollero, Robótica: Manipuladores y Robots Móviles, 1.a ed. Barcelona, España: Marcombo, 2006.
  12. R. V. Patel and F. Shadpey, Control of Redundant Robot Manipulators: Theory and Experiments. Heidelberg, Germany: Springer, 2005.
  13. H. Chen, J. Wang, B. Zhang, and T. Fuhlbrigge, «Modeling and analysis of robotic wheel loading process in trim-and-final assembly», Industrial Robot: An International Journal, vol. 38, n.° 6, pp. 614-621, oct. 2011. https://doi.org/10.1108/01439911111179129
  14. W. You, M. Kong, L. Sun, and Y. Diao, «Control system design for heavy duty industrial robot», Industrial Robot: An International Journal, vol. 39, n.° 4, pp. 365-380, jun. 2012. https://doi.org/10.1108/01439911211227944
  15. F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator Control: Theory and Practice, 2.a ed. New York: Marcel Dekker, Inc., 2004.
  16. M. Kalyoncu and F. M. Botsali, «Vibration analysis of an elastic robot Manipulator with prismatic Joint and A time-varying end mass», Arabian Journal for Science and Eng., vol. 29, n.° 1, pp. 27–38, 2004.
  17. M. W. S., Seth Hutchinson, and M. Vidyasagar, «Robot Modeling and Control», Industrial Robot: An International Journal, vol. 33, n.° 5, pp. 403-403, sep. 2006. https://doi.org/10.1108/ir.2006.33.5.403.1
  18. R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Massachussets: The MIT Press, 1981.
  19. J. J. Craig, Introduction to Robotics: Mechanics and Control, 3.a ed. New Jersey: Prentice Hall, 2004.
  20. M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 1.a ed. New York: Wiley, 2005.
  21. P. J. From, J. T. Gravdahl, and K. Y. Pettersen, «Rigid Body Dynamics», en Vehicle-Manipulator Systems, London: Springer London, 2014, pp. 191-227.
  22. J. Angeles, «Dynamics of Serial Robotic Manipulators», en Fundamentals of Robotic Mechanical Systems, Springer International Publishing, 2014, pp. 281-351.
  23. C. Urrea and J. Kern, «A New Model for Analog Servomotors. Practical Implementations», Canadian Journal on Automation, Control and Intelligent Systems, vol. 2, n.° 2, pp. 29-38, 2011.
  24. R. A. DeCarlo, S. H. Zak, and G. P. Matthews, «Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial», Proceedings of the IEEE, vol. 76, n.° 3, pp. 212 -232, mar. 1988. https://doi.org/10.1109/5.4400
  25. A. Boucheta, I. K. Bousserhane, A. Hazzab, P. Sicard, and M. K. Fellah, «Speed Control of Linear Induction Motor using Sliding Mode Controller Considering the End Effects», Journal of Electrical Engineering and Technology, vol. 7, n.° 1, pp. 34-45, jan. 2012. https://doi.org/10.5370/JEET.2012.7.1.34
  26. J.-J. Slotine and W. Li, Applied Nonlinear Control. New Jersey: Prentice Hall, 1991.
  27. J.-X. Xu, T. H. Lee, M. Wang, y X.-H. Yu, «Design of Variable Structure Controllers With Continuous Switching Control», International Journal of Control, vol. 65, n.° 3, pp. 409-431, 1996. https://doi.org/10.1080/00207179608921704
  28. C.-L. Chen and C.-J. Lin, «A Sliding Mode Control Approach to Robotic Tracking Problem», presentado en 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona, Spain, 2002.
  29. K. Braikia, M. Chettouh, B. Tondu, P. Acco, and M. Hamerlain, «Improved Control Strategy of 2-Sliding Controls Applied to a Flexible Robot Arm», Advanced Robotics, vol. 25, n.° 11-12, pp. 1515-1538, 2011. https://doi.org/10.1163/016918611X579510
  30. J. Craig, Adaptive Control of Mechanical Manipulators, 1.a ed. New York: Addison-Wesley, 1988.
  31. J.-J. Slotine and W. Li, «Adaptive Manipulator Control: A Case Study», IEEE Transactions on Automatic Control, vol. 33, n.° 11, pp. 995 -1003, nov. 1988. https://doi.org/10.1109/9.14411
  32. B. Siciliano and O. Khatib, Springer Handbook of Robotics, 1.a ed. Berlin, Heidelberg: Springer, 2008.

Cited by

  1. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations 2017, https://doi.org/10.1007/s11465-018-0471-4
  2. Parameter identification methods for real redundant manipulators vol.15, pp.4, 2017, https://doi.org/10.1016/j.jart.2017.02.004
  3. Research of manipulator trajectory tracking based on adaptive robust iterative learning control pp.1573-7543, 2018, https://doi.org/10.1007/s10586-018-1919-3
  4. Robust trajectory tracking control for uncertain mechanical systems: servo constraint-following and adaptation mechanism pp.1366-5820, 2018, https://doi.org/10.1080/00207179.2018.1528386