DOI QR코드

DOI QR Code

Enhanced Sialylation of Albumin-erythropoietin by Biphasic Cultivation in CHO Cells

CHO 세포의 2단계 배양을 통한 Albumin-erythropoietin의 시알산 증대

  • Lim, Jin-Hyuk (Department of Biological Engineering, Inha University) ;
  • Shin, Soo-Ah (Department of Biological Engineering, Inha University) ;
  • Cha, Hyun-Myoung (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 임진혁 (인하대학교 공과대학 생물공학과) ;
  • 신수아 (인하대학교 공과대학 생물공학과) ;
  • 차현명 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Received : 2016.08.31
  • Accepted : 2016.12.21
  • Published : 2016.12.31

Abstract

In glycoprotein, Terminal sialic acid residues of N-linked glycan are imperative things because they prevent the recognition from asialoglycoprotein-receptor that affect the half-life of glycoproteins. So establishment of culture process for enhancing sialic acid is important to maximize sialic acid contents of glycoprotein. In this study, we investigated effects of biphasic culture of Chinese hamster ovary (CHO) cells producing albumin-erythropoietin to increase sialylation. Biphasic cultures were performed with shift of $CO_2$ concentrations and temperatures at day 5 when viable cell density was decreased and sialidase was started to be released by cell lysis. The examined temperature set points were 33, 35 and $37^{\circ}C$ respectively and the $CO_2$ concentration was 1, 5, 10 and 15%. We confirmed that sialidase activity was the lowest in biphasic culture that was shifted from normal culture condition to 1% of $CO_2$ and $33^{\circ}C$ on day 5. However, the temperature and concentration of $CO_2$ have little effect on activity of ${\alpha}2,3$-sialyltransferase. Also, sialic acid contents were enhanced 1.13-fold higher than that in control culture. In conclusion, Biphasic cultivation in CHO cells led to inhibition of sialidase activity and increases of sialylated glycan.

Keywords

References

  1. Jayapal, K. P., K. F. Wlaschin, W. -S. Hu, and M. G. S. Yap (2007) Recombinant protein therapeutics from CHO Cells - 20 years and counting. Chem. Eng. Prog. 103: 40-47.
  2. Xu, X., H. Nagarajan, N. E. Lewis, S. Pan, Z. Cai, X. Liu, W. Chen, M. Xie, W. Wang, S. Hammond, M. R. Andersen, N. Neff, B. Passarelli, W. Koh, H. C. Fan, J. Wang, Y. Gui, K. H. Lee, M. J. Betenbaugh, S. R. Quake, I. Famili, B. O. Palsson, and J. Wang (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29: 735-741. https://doi.org/10.1038/nbt.1932
  3. Lingg, N., P. Zhang, Z. Song, and M. Bardor (2012) The sweet tooth of biopharmaceuticals: Importance of recombinant protein glycosylation analysis. Biotechnol. J. 7: 1462-1472. https://doi.org/10.1002/biot.201200078
  4. Kaisermayer, C., D. Reinhart, A. Gili, M. Chang, P. -M. Aberg, A. Castan, and R. Kunert (2016) Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression. J. Biotechnol. 227: 3-9. https://doi.org/10.1016/j.jbiotec.2016.03.054
  5. Schmidberger, T., C. Posch, A. Sasse, C. Glch, and R. Huber (2015) Progress toward forecasting product quality and quantity of mammalian cell culture processes by performance-based modeling. Biotechnol. Prog. 31: 1119-1127. https://doi.org/10.1002/btpr.2105
  6. Davies, S. L., C. S. Lovelady, R. K. Grainger, A. J. Racher, R. J. Young, and D. C. James (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol. Bioeng. 110: 260-274. https://doi.org/10.1002/bit.24621
  7. Li, F., N. Vijayasankaran, A. Shen, R. Kiss, and A. Amanullah (2010) Cell culture processes for monoclonal antibody production. mAbs. 2: 466-479. https://doi.org/10.4161/mabs.2.5.12720
  8. Costa, A. R., M. E. Rodrigues, M. Henriques, R. Oliveira, and J. Azeredo (2014) Glycosylation: Impact, control and improvement during therapeutic protein production. Crit. Rev. Biotechnol. 34: 281-299. https://doi.org/10.3109/07388551.2013.793649
  9. Long, D. L., D. H. Doherty, S. P. Eisenberg, D. J. Smith, M. S. Rosendahl, K. R. Christensen, D. P. Edwards, E. A. Chlipala, and G. N. Cox (2006) Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro bioactivity. Exp. Hematol. 34: 697-704. https://doi.org/10.1016/j.exphem.2006.02.011
  10. Bork, K., W. Reutter, W. Weidemann, and R. Horstkorte (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett. 581: 4195-4198. https://doi.org/10.1016/j.febslet.2007.07.060
  11. Wong, N. S. C., M. G. S. Yap, and D. I. C. Wang (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016. https://doi.org/10.1002/bit.20815
  12. Zhang, X., S. H. L. Lok, and O. L. Kon (1998) Stable expression of human a-2,6-sialyltransferase in Chinese hamster ovary cells: Functional consequences for human erythropoietin expression and bioactivity. Biochim. Biophys. Acta Gen. Subj. 1425: 441-452. https://doi.org/10.1016/S0304-4165(98)00095-6
  13. Munzert, E., J. Mthing, H. Bntemeyer, and J. Lehmann (1996) Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol. Prog. 12: 559-563. https://doi.org/10.1021/bp9600086
  14. Chuan, K. H., S. F. Lim, L. Martin, C. Y. Yun, S. O. H. Loh, F. Lasne, and Z. Song (2006) Caspase activation, sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology. 51: 67-79. https://doi.org/10.1007/s10616-006-9016-5
  15. Gramer, M. J. and C. F. Goochee (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol. Prog. 9: 366-373. https://doi.org/10.1021/bp00022a003
  16. Ngantung, F. A., P. G. Miller, F. R. Brushett, G. L. Tang, and D. I. C. Wang (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95: 106-119. https://doi.org/10.1002/bit.20997
  17. Trummer, E., K. Fauland, S. Seidinger, K. Schriebl, C. Lattenmayer, R. Kunert, K. Vorauer-Uhl, R. Weik, N. Borth, H. Katinger, and D. Mller (2006) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol. Bioeng. 94: 1033-1044. https://doi.org/10.1002/bit.21013
  18. Yoon, S. K., S. L. Choi, J. Y. Song, and G. M. Lee (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and $37.0^{\circ}C$. Biotechnol. Bioeng. 89: 345-356. https://doi.org/10.1002/bit.20353