기계적 특성 향상을 위한 마그네슘 합금의 등틍로각압출 공정 조건에 관한 연구

A study on equal-channel angular extrusion process conditions for improving mechanical properties of magnesium alloy

  • 투고 : 2016.01.28
  • 심사 : 2016.03.02
  • 발행 : 2016.03.03

초록

Although magnesium alloy has received much attention to date for its lightweight and high specific strength, their applications are impeded by the low formability which is caused by the hexagonal crystal structure at room temperature. In general, equal-channel angular extrusion(ECAE) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. ECAE process has several parameters such as angle of die, process temperature, process route and speed. During ECAE process of Mg alloy, these parameters has great influence on the extrudability and the mechanical properties of alloy. The aim of this study is to estimate the influences of process conditions on the formability of AZ31 and AZ31-CaO alloys. Mg alloys are processed through ECAE at elevated temperatures using three types of die with channel angle of $90^{\circ}$, $110^{\circ}$, $135^{\circ}$ using route $B_c$, respectively. This study discusses the feasibility of using ECAE to improve both formability and strength on magnesium alloys by comparative analyzing the mechanical properties and microstructural evolution in each condition.

키워드

참고문헌

  1. B. L. Mordike, T. Ebert, "Magnesium: Properties - applications - potential", Mater. Sci. Eng. A 302, pp 37-45, 2001. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. J. Bohelen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, K.U. Kainer, "microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31", Scr. Mater. 53, pp. 259-264, 2005. https://doi.org/10.1016/j.scriptamat.2005.03.036
  3. B. Dale, J. Hudspeth, "Direct Extrusion of Magnesium Alloy: A Quick Study Method, SAE Technical Paper", #950426, p. 43, 1995.
  4. A. Jambor, M. Beyer, "New cars - new materials", Mater. Design. 18, pp. 203-209, 1997. https://doi.org/10.1016/S0261-3069(97)00049-6
  5. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, "Bulk nanostructured materials from severe plastic deformation", Prog. Mater. Sci. 45, pp. 103-189, 2000. https://doi.org/10.1016/S0079-6425(99)00007-9
  6. S. Alsagabi, I. Charit, "Fundamental studies on the thermal stability and mechanical characteristics of AZ31 alloy", Mater. Sci. Eng. A 536, pp. 64-72, 2012. https://doi.org/10.1016/j.msea.2011.12.054
  7. Y. Iwahasbi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, "Principle of equal-channel angular pressing for the processing of ultra-fine grained materials", Scr. Mater. 35, pp. 143-146, 1996. https://doi.org/10.1016/1359-6462(96)00107-8
  8. M. Furukawa, Y. Iwahasbi, Z. Horita, M. Nemoto, T. G. Langdon, "The shearing characteristics associated with equal-channel angular pressing", Mater. Sci. Eng. A 257, pp. 328-332, 1998. https://doi.org/10.1016/S0921-5093(98)00750-3
  9. H. K. Kim, W. J. Kim, "Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation", Mater. Sci. Eng. A 385, pp. 300-308, 2004. https://doi.org/10.1016/S0921-5093(04)00882-2
  10. S. H. Kang, Y. S. Lee, J. H. Lee, "Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics", J. Mater. Process. Technol. 201, pp. 436-440, 2008. https://doi.org/10.1016/j.jmatprotec.2007.11.305
  11. K. Matsubara, Y. Miyahara, Z. Horita, T. G. Langdon, "Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP", Acta Mater. 51, pp. 3073-3084, 2003. https://doi.org/10.1016/S1359-6454(03)00118-6
  12. M. M. Avedesian, H. Baker, "Magnesium and Magnesium Alloys (ASM Specialty Handbook)", ASM International, p. 165, 1999.
  13. F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, C. Hartig, K.U. Kainer, "Anisotropic Properties of Magnesium Sheet AZ31", Mater. Sci. Forum 419/422, pp. 315-320, 2003. https://doi.org/10.4028/www.scientific.net/MSF.419-422.315
  14. L. B. Tong, M. Y. Zheng, H. Chang, X. S. Hu, K. Wu, S. W. Xu, S. Kamado, Y. Kojima, "Microstructure and mechanical properties of Mg-Zn-Ca alloy processed by equal channel angular pressing", Mater. Sci. Eng. A 523, pp. 289-294, 2009. https://doi.org/10.1016/j.msea.2009.06.021
  15. S. M. Masoudpanah, R. Mahmudi, "The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing", Mater. Design 31, pp. 3512-3517, 2010. https://doi.org/10.1016/j.matdes.2010.02.018
  16. R. Jahadi, M. Sedighi, H. Jahed, "ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy", Mater. Sci. Eng. A 593, pp. 178-184, 2014. https://doi.org/10.1016/j.msea.2013.11.042
  17. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H.K. Kim, "Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing", Mater. Des. 43, pp. 31-39, 2013. https://doi.org/10.1016/j.matdes.2012.06.051
  18. J. Albinmousa, H. Jahed, S. Lambert, "Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy", Int. J. Fatigue 33, pp. 1403-1416, 2011. https://doi.org/10.1016/j.ijfatigue.2011.04.012
  19. R. B. Figueiredo, Z. Szaraz, Z. Trojanova, P. Lukac, T.G. Langdon, "Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing", Scr. Mater. 63, pp. 504-507, 2010. https://doi.org/10.1016/j.scriptamat.2010.05.016