참고문헌
- J.M. Park and P.D. Anderson, A ternary model for double-emulsion formation in a capillary microfluidic device, Lab Chip, 12(15) (2012), 2672-2677. https://doi.org/10.1039/c2lc21235h
- L. Szalmas, Viscous velocity, diffusion and thermal slip coefficients for ternary gas mixtures, Euro. J. Mech. B-Fluid., 53 (2015), 264-271. https://doi.org/10.1016/j.euromechflu.2015.06.005
- A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, and H.A. Stone, Weitz DA. Monodisperse double emulsions generated from a microcapillary device, Science, 308(5721) (2005), 537-541. https://doi.org/10.1126/science.1109164
- C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25(3) (1977), 220-252. https://doi.org/10.1016/0021-9991(77)90100-0
- H.C. Kan, H.S. Udaykumar, W. Shyy, and R. Tran-Son-Tay, Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. Fluid., 10(4) (1998), 760-774. https://doi.org/10.1063/1.869601
- H.C. Kan, W. Shyy, H.S. Udaykumar, P. Vigneron, and R. Tran-Son-Tay, Effects of nuclues on leukocyte recovery, Ann. Biomed. Eng., 27 (1999), 648-655. https://doi.org/10.1114/1.214
- R. Gautier, S. Laizet, and E. Lamballais, A DNS study of jet control with microjets using an immersed boundary method, Int. J. Comput. Fluid Dyn., 28 (2014), 393-410. https://doi.org/10.1080/10618562.2014.950046
- P. Ouro, L. Cea, L. Ramirez, and X. Nogueira, An immersed boundary method for unstructured meshes in depth averaged shallow water models, Int. J. Numer. M. Fluid., DOI: 10.1002/fld.4201, 2015.
- C. Yan, W.X. Huang, G.W. Cui, C. Xu, and Z.S. Zhang, A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries, Int. J. Comput. Fluid Dyn., 29 (2015), 12-25. https://doi.org/10.1080/10618562.2014.1002484
- H. Hua, J. Shin, and J. Kim, Dynamics of a compound droplet in shear flow, Int. J. Heat Fluid Fl., 50 (2014), 63-71. https://doi.org/10.1016/j.ijheatfluidflow.2014.05.007
- Y. Kim, M.C. Lai, and C.S. Peskin, Numerical simulations of two-dimensional foam by the immersed boundary method, J. Comput. Phys., 229(13) (2010) 5194-5207. https://doi.org/10.1016/j.jcp.2010.03.035
- Y. Kim and Y. Seol, Numerical simulations of two-dimensional wet foam by the immersed boundary method, Comput. Struct., 122 (201), 259-269. https://doi.org/10.1016/j.compstruc.2013.03.015
- Y. Kim, M.C. Lai, C.S. Peskin, and Y. Seol, Numerical simulations of three-dimenisonal foam by the immersed boundary method, J. Comput. Phys., 269 (2014), 1-21. https://doi.org/10.1016/j.jcp.2014.03.016
- S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79(1) (1988), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- S. Osher and R.P. Fedkiw RP, Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2003.
- F. Raees, D.R. Heul, and C. Vuik, A mass-conserving level-set method for simulation of multiphase flow in geometrically complicated domains, Int. J. Numer. M. Fluid, DOI:10.1002/fld.4188, 2005.
- J.A. Sethian and P. Smereka, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech., 35 (2003), 341-372. https://doi.org/10.1146/annurev.fluid.35.101101.161105
- B. Merriman, J.K. Bence, and S. Osher, Motion of multiple junctions a level set approach, J. Comput. Phys., 12(2) (1994), 334-363.
- K.A. Smith, F.J. Solis, and D.L. Chopp, A projection method for motion of triple junctions by level sets, Interface. Free Bound., 4 (2002) 263-276.
- S. Aland and F. Chen, An efficient and energy stable shceme for a phase-field model for the moving contact line problem, Int. J. Numer. M. Fluid., DOI: 10.1002/fld.4200, 2015.
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys. 28(2) (1958), 258-267. https://doi.org/10.1063/1.1744102
- D. Anderson, G.B. McFadden, and A.A. Wheeler, Diffuse interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30(1) (1998) 139-165. https://doi.org/10.1146/annurev.fluid.30.1.139
- D. de Fontaine, A computer simulation of the evolution of coherent composition variations in solid solutions, Ph.D. Thesis, Northwestern University, USA, 1967.
- D. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712. https://doi.org/10.1137/0153078
- J.F. Blowey, M. Copetti, and C.M. Elliott, Numerical analysis of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal. 16 (1996), 111-139. https://doi.org/10.1093/imanum/16.1.111
- F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, and M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transport Porous Med., 82(3) (2010), 463-483. https://doi.org/10.1007/s11242-009-9408-z
- M. Copetti, Numerical experiments of phase separation in ternary mixtures, Math. Comput. Simul. 52(1) (2000), 41-51. https://doi.org/10.1016/S0378-4754(99)00153-6
- J.S. Kim, Phase field computations for ternary fluid flows, Comput. M. Appl. Mech. Eng., 196 (2007), 4779-4788. https://doi.org/10.1016/j.cma.2007.06.016
- J.S. Kim, Phase-field models for multi-component fluid flow Commun. Comput. Phys. 12 (2012) 613-661. https://doi.org/10.4208/cicp.301110.040811a
- H.G. Lee and J. Kim, Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids, Euro. J. Mech. B-Fluid., 49 (2015), 77-88. https://doi.org/10.1016/j.euromechflu.2014.08.001
- T.Y. Hou, Z. Li, S. Osher, and H. Zhao, A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys. 132(2) (1997), 236-252.
- F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, Multiple interacting liquids, ACM T. Graphic., 25(3) (2006), 812-819. https://doi.org/10.1145/1141911.1141960
- T. Oda, N. Satofuka, and H. Nishida, Numerical analysis of particle behavior penetrating into liquid by level set method, in: S.W. Armfield, P. Morgan (Eds.), Compututional Fluid Dynamics 2002, Springer, Berlin Heidelberg, 2003, pp. 529-534.
- K.A. Smith, F.J. Solis, L. Tao, K. Thornton, and M.O. De La Cruz, Domain growth in ternary fluids: a level set approach, Phys. Rev. Lett., 84 (2000), 91-94. https://doi.org/10.1103/PhysRevLett.84.91
- J.S. Kim and J. Lowengrub, Phase field modeling and simulation of three-phase flows, Interface. Free Bound., 7 (2005), 435-466.
- M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114(1) (1994), 146-159. https://doi.org/10.1006/jcph.1994.1155
- H.G. Lee and J. Kim, A second-order accurate non-linear differnce scheme for the Ncomponent Cahn-Hilliard system, Physica A, 387(19) (2008), 4787-4799. https://doi.org/10.1016/j.physa.2008.03.023
- D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000), 57-88. https://doi.org/10.1017/S0022112099006874
- H. Hua, J. Shin, and J. Kim, Level set, phase-field, and immersed boundary methods for two-phase fluid flows, J. Fluid. Eng., 136 (2014), 021301.
- J.U. Brackbill, D.B. Kothe, and C. Zemach, A continuum method for modelling surface tension, J. Comput. Phys., 100(2) (1992), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
- Y. Li, A. Yun, and J. Kim, An immersed boundary method for simulating a single axisymmetric cell growth and division, J. Math. Bio., 65(4) (2012), 653-675. https://doi.org/10.1007/s00285-011-0476-7
- F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, ESAIMMath. Model. Numer. Anal., 40(4) (2006), 653-687. https://doi.org/10.1051/m2an:2006028
- A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22(104) (1968), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- Y. Li, A. Yun, D. Lee, J. Shin, D. Jeong, and J. Kim, Three-dimensional Volum-econserving immersed boundary model for two-phase fluid flows, Compu. Meth. Appl. Mech. Eng., 257 (2013), 36-46. https://doi.org/10.1016/j.cma.2013.01.009
- H. Hua, Y. Li, J. Shin, H. Song, and J. Kim, Effect of confinement on droplet deformation in shear flow, Int. J. Comput. Fluid Dyn., 27 (2013), 317-331. https://doi.org/10.1080/10618562.2013.857406
- C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer, Berlin Heidelberg, 1998.
- H.G. Lee, J.W. Choi, and J. Kim, A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system, Physica A, 391 (2012), 1009-1019. https://doi.org/10.1016/j.physa.2011.11.032
- J.J. Eggleston, G.B. McFadden, and P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D, 150 (2001), 91-103. https://doi.org/10.1016/S0167-2789(00)00222-0
- J. Kim, S. Lee, and Y. Choi, A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84 (2014), 11-17. https://doi.org/10.1016/j.ijengsci.2014.06.004
피인용 문헌
- Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain vol.80, pp.3, 2016, https://doi.org/10.1007/s11538-018-0390-x
- Longitudinal muscular column in the prostatic urethral wall: Its form, shape, and possible function based on mathematical simulation in ejaculation vol.80, pp.6, 2016, https://doi.org/10.1002/pros.23961