DOI QR코드

DOI QR Code

Effects of the ground water level on the stability of an underpass structure considering the degree of surface imperviousness

지표면 유출 특성을 고려한 지하수위 변화가 지하차도 구조물 안정성에 미치는 영향

  • Jo, Seon-Ah (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Hong, Eun-Soo (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Jin, Kyu-Nam (Land and Housing Institute, Korea Land and Housing Corporation) ;
  • Lee, Jung-Min (Land and Housing Institute, Korea Land and Housing Corporation) ;
  • Han, Shin-In (R&D Center, Seoyeong Engineering Co., Ltd.)
  • 조선아 (한국과학기술원 건설 및 환경공학과) ;
  • 홍은수 (한국과학기술원 건설 및 환경공학과) ;
  • 조계춘 (한국과학기술원 건설 및 환경공학과) ;
  • 진규남 (한국토지주택공사 토지주택연구원 도시환경연구실) ;
  • 이정민 (한국토지주택공사 토지주택연구원 도시환경연구실) ;
  • 한신인 (서영엔지니어링 기술연구소)
  • Received : 2016.01.08
  • Accepted : 2016.01.26
  • Published : 2016.01.30

Abstract

Ground water is one of important parameters in the designs of underpass structures because urban areas are characterized by soil ground which is relatively permeable than rock ground and a high level of ground water due to low elevation. Therefore, it is important properly to predict variations of the ground water when they can affect underpass structures. In this study, a series of numerical analyses are performed to predict the variations of ground water levels considering the degree of surface imperviousness and LID(Low Impact Development) application. In turn the stability of underground structure is assessed using predicted ground water level. The results show that an increase in the impervious surface area decreases the ground water level. The application of permeable pavement as a LID facility increases the ground water level, improving the infiltration capacity of rainfall into the ground. Seasonal variations of the ground water level are also verified in numerical simulation. The results of this study suggest that reasonable designs of underpass structures can be obtained with the suitable prediction and application of the ground water level considering the surface characteristics.

도시지역에 시공되는 지하차도 구조물은 지리적 특성상 지하수위의 영향을 받기 쉽다. 그러나 지하차도 구조물 설계 시에는 일괄적인 지하수위를 적용하여 설계를 수행하는 경우가 많으며 이는 과소 또는 과다 설계를 초래할 수 있다. 따라서 본 연구에서는 보다 신뢰도 높은 지하수위 예측을 통해 지하차도 구조물의 합리적인 부력설계 방향을 제시하고자한다. 특히, 최근 친환경적인 개발 개념인 LID 기법을 도입한 투수 포장 적용에 따른 물순환 특성 변화가 지하차도 구조물에 어떠한 영향을 미치는지에 대해 검토하였다. 이를 위해 개발 전, 개발 후, 투수포장 적용에 의한 지표면 불투수 특성 변화가 침투량 및 지하수위 변화에 미치는 영향 분석과 지하차도 안정성을 검토하는 일련의 수치해석을 수행하였다. 해석결과 지표면의 변화가 지하수위 변화를 유발하고 지하 구조물 안정성에 영향을 줄 수 있음을 확인하였다. 따라서 지하차도 및 지하구조물의 최적 설계를 위해서는 지표면 유출 특성을 고려한 적절한 지하수위 예측 및 적용이 필요할 것으로 판단된다.

Keywords

References

  1. Back, R.S., Ha, K.C., Lee, Y.U., Hong, S.C., Kim, M.H., Kim, M.M., Pack, D.H. (2011), "Determine capacity of the nonpoint source pollution storage facilities in urban areas by SWMM", Journal of Korean Society of Urban Environment, Vol. 11, No. 1, pp. 73-80.
  2. Danish Hydraulic Institute (1999), "MIKE SHE water movement user manual". DHI software, Copenhagen.
  3. Environmental Protection Agency (2000), Low impact development (LID)-A literature review, EPA-841-B-00-005, Washington DC.
  4. Jo, S.A., Jin, K.N., Sim, Y.J., Cho, G.C. (2013), "Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study", Journal of Korean Tunnelling Underground Space Association, Vol. 15, No. 20, pp. 123-134. https://doi.org/10.9711/KTAJ.2013.15.2.123
  5. Kim, N.W., Chung, I.M., Won, Y.S. (2006), "An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model", Journal of the Korean Society of Civil Engineers, Vol. 26. No. 5B, pp. 481-488.
  6. Kim, N.W., Chung, I.M., Won, Y.S., Arnold, J.G. (2008), "Development and application of the integrated SWAT-MODFLOW model", Journal of Hydrology, Vol. 356, No. 1-2, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  7. Kjelds, J. and Storm, B. (2001), "Integrated water resources modeling, water use, and water quality simulation", Proceedings of the World Water and Environmental Resources Congress, ASCE, pp. 10.
  8. Lee, J.M., Lee, S.H., Lee, K.S. (2006), "A modification of SWMM to simulate permeable pavement, and the effect analysis on a release of treated wastewater and the permeable pavement", Journal of Korea Water Resources Association, Vol. 39, No. 2, pp. 109-120. https://doi.org/10.3741/JKWRA.2006.39.2.109
  9. Lee, S.D. (2000), "Earth pressure on the underground box structure", Journal of Korean Geotechnical Society, Vol. 16, No. 1, pp. 243-250.
  10. McCuen, R.H., Johnson, P.A., Ragan, R.M. (1996), Hydrology, FHWA-SA-96-067, Federal Highway Administration, Washington, DC.
  11. Otto, B., Ransel, K., Todd, J., Lovaas, D., Stutzman, H., Bailey, J. (2002), "Paving our way to water shortages: how sprawl aggravates the effects of drought", American Rivers, Natural Resources Defense Council, Smart Growth America, Washington, D.C.
  12. Slonecker, E.T., Jennings, D.B., Garofalo, D. (2001), "Remote sensing of impervious surfaces: a review", Remote Sensing Reviews, Vol. 20, No. 3, pp. 227-255. https://doi.org/10.1080/02757250109532436
  13. Sophocleous, M. S., Perkins, S.P. (2000), "Methodology and application of combined watershed and ground-water models in Kansas", Journal of Hydrology, Vol. 236, pp. 185-201. https://doi.org/10.1016/S0022-1694(00)00293-6
  14. Tholin, A.L., Keifer, C.J. (1960), "Hydrology of urban runoff", Transactions, American Society of Civil Engineers, Vol. 123, pp. 1308-1379.
  15. United States Department of Agriculture (1968), Urban hydrology for small watershed, Technical Release 55 (TR-55) (Second ed.). Natural Resources Conservation Service, Conservation Engineering Division.
  16. Yi, J.Y., Yeo, W.G., Shim, J.H., Kang, T.H. (2001), "Analysis of stormwater runoff reduction effects by using porous pavement", Journal of the Korean Society of Civil Engineers, Vol. 21, No. 6A, pp. 645-654.