Abstract
In this paper, a feature based panorama image generation algorithm using FAST(Features from Accelerated Segment Test) method that is faster than SIFT(Scale Invariant Feature Transform) and SURF(Speeded Up Robust Features) is proposed. Cylindrical projection is performed to generate natural panorama images with numerous images as input. The occurred error can be minimized by applying RANSAC(Random Sample Consensus) for the matching process. When we synthesize numerous images acquired from different camera angles, we use blending techniques to compensate the distortions by the heterogeneity of border line. In that way, we could get more natural synthesized panorama image. The proposed algorithm can generate natural panorama images regardless the order of input images and tilted images. In addition, the image matching can be faster than the conventional method. As a result of the experiments, distortion was corrected and natural panorama image was generated.
본 논문에서는 자연스러운 파노라마 영상 생성을 위해 SIFT와 SURF 방법보다 빠른 FAST(Features from Accelerated Segment Test)를 이용한 특징점 기반의 파노라마 영상 생성 기법을 제안한다. 다수의 영상을 이용해 자연스러운 파노라마 영상을 만들기 위해 실린더 투영을 수행 한 후 추출된 특징점들을 RANSAC(Random Sample Consensus)을 이용해 정합 시 오차율을 최소화한다. 서로 다른 방향에서 얻는 다수의 영상을 합성할 때 정합 경계 주변의 이질감을 보완하기 위해 블렌딩 기법을 사용함으로써 자연스러운 파노라마 영상을 생성한다. 제안하는 기법에서는 영상을 정합할 때 영상의 입력 순서와 방향에 관계없이 파노라마 영상을 만들 수 있다. 또한 기존의 방법보다 빠른 속도로 영상 정합이 가능하다. 다수의 영상으로 실험을 한 결과 왜곡이 보정되고 자연스러운 파노라마 영상을 생성할 수 있었다.