Abstract
This paper presents a speech recognition database verification system using speech measures, and describes a speech measure extraction algorithm which is applied to this system. In our previous study, to produce an effective speech quality measure for the system, we propose a combination of various speech measures which are highly correlated with WER (Word Error Rate). The new combination of various types of speech quality measures in this study is more effective to predict the speech recognition performance compared to each speech measure alone. In this paper, we increase the system independency by employing GMM acoustic score instead of HMM score which is obtained by a secondary speech recognition system. The combination with GMM score shows a slightly lower correlation with WER compared to the combination with HMM score, however it presents a higher relative improvement in correlation with WER, which is calculated compared to the correlation of each speech measure alone.
본 논문에서는 음성의 특성 지표를 이용한 음성 인식용 데이터베이스 검증 시스템의 개발 내용을 소개하고 이 시스템의 핵심 기술인 음성 특성 지표 추출 알고리즘을 설명한다. 선행 연구에서는 본 시스템에 필요한 효과적인 음성 인식 성능 지표를 생성하기 위해 대표적인 음성 인식 성능 지표인 단어 오인식률(Word Error Rate, WER)과 상관도가 높은 여러 가지 음성 특성 지표들을 조합하여 새로운 성능 지표를 생성하였다. 생성된 음성 인식 성능 지표는 다양한 잡음 환경에서 각 음성 특성 지표를 단독으로 사용할 때보다 단어 오인식률과 높은 상관도를 나타내어 음성 인식 성능을 예측하는데 효과적임을 입증 하였다. 본 실험에서는 선행 연구에서 조합에 사용한 이차적인 음성 인식기에서 추출된 음향 모델 확률 값을 GMM(Gaussian Mixture Model) 음향 모델 확률 값으로 대체해 조합함으로써 시스템 구축 시 다른 음성 인식기에 대한 의존성을 감소시킨다.