DOI QR코드

DOI QR Code

평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석

Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis

  • 곽태영 (서울대학교 건설환경공학부) ;
  • 김준영 (서울대학교 건설환경공학부) ;
  • 정충기 (서울대학교 건설환경공학부)
  • Kwak, Tae-Young (Dept. of Civil & Environmental Engrg., Seoul National Univ.) ;
  • Kim, Joon-Young (Dept. of Civil & Environmental Engrg., Seoul National Univ.) ;
  • Chung, Choong-Ki (Dept. of Civil & Environmental Engrg., Seoul National Univ.)
  • 투고 : 2016.02.26
  • 심사 : 2016.03.10
  • 발행 : 2016.03.31

초록

일반적으로 흙의 파괴는 전단 변형이 집중되는 영역인 전단면의 형성과 발달에 의해 발생한다. 정규압밀 점성토의 파괴거동을 확인하기 위해 시료 내부의 변형거동 분포에 대해 평가가 필요하다. 본 연구에선 재성형된 카올리나이트 시료에 대해 평면변형률 시험을 수행하였으며, 전단 과정에서 일정 변형률 간격에서 디지털 이미지 해석을 수행하였다. 시험 결과로 도출된 응력-변형률 결과를 통해 4개의 단계를 결정하여 시료의 변형거동과 전단면 특성을 평가하였다.

Soil failure is initiated and preceded by forming and progressing of shear band, defined as the localization of deformation into thin zones of soil mass. To understand the failure mechanism of normally consolidated cohesive soil, the spatial distribution and evolution of deformation within the entire specimen need to be evaluated. In this study, vertical compression tests under plane strain condition were performed on reconstituted kaolinite specimens, while capturing digital images of the specimen at regular intervals during shearing. Overall stress-strain behavior from initial to post peak has been analyzed together with spatial distributions of deformations and shear band characteristics from digital images at 4 stages.

키워드

참고문헌

  1. Kim, J. Y., Jang, E. R., and Chung, C. K. (2011), "Evaluation of Accuracy and Optimization of Digital Image Analysis Technique for Measuring Deformation of Soils", Journal of the Korean Geotechnical Society, Vol.27, No.7, pp.5-16. https://doi.org/10.7843/kgs.2011.27.7.005
  2. Jang, E. R., Jung, Y. H., and Chung, C. K. (2009), "An Optimal Digital Image Analysis Technique for Measuring Deformation of Granular Soils", Journal of the Korean Geotechnical Society, Vol.25, No.12, pp.119-130.
  3. Jang, E. R., Jung, Y. H., Kim, J. Y., and Chung, C. K. (2011), "Assessment of Shear Band Characteristics in Granular Soils Using Digital Image Analysis for Plane Strain Tests", Journal of the Korean Geotechnical Society, Vol.27, No.4, pp.51-65. https://doi.org/10.7843/kgs.2011.27.4.051
  4. Alshibli, K. A. and Sture, S. (1999), "Sand Shear Band Thickness Measurements by Digital Imaging Techniques", Journal of Computing in Civil Engineering, Vol.13, No.2, pp.103-109. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(103)
  5. Alshibli, K. A., Batiste, S. N., and Sture, S. (2003), "Strain Localization in Sand: Plane Strain vs. Triaxial Compression", ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol.129, No.6, pp.1-12. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(1)
  6. Alshibli, K., Godbold, D. L., and Hoffman, K. (2004), "Strain Localization in Clay: Plane Strain versus Triaxial Loading Conditions", Geotechnical Testing Journal, Vol.27, No.4, pp.337-346.
  7. Alshibli, K. A. and Akbas, I. S. (2007), "Sand Shear Band Thickness Measurements by Digital Imaging Techniques", Geotechnical & Geological Engineering, Vol.25, pp.45-55. https://doi.org/10.1007/s10706-006-0005-4
  8. Arthur, J. R. F., Dunston, T., Al-Ani., Q. A. J., and Assadi. A. (1977), "Plastic Deformation and Failure in Granular Media", Geotechnique, Vol.27, No.1, pp.53-74 https://doi.org/10.1680/geot.1977.27.1.53
  9. Callisto, L. and Calabresi, G. (1998), "Mechanical Behaviour of Natural Soft Clay", Geotechnique, Vol.48, No.4, pp.495-513. https://doi.org/10.1680/geot.1998.48.4.495
  10. Desreus, J., Chambon, M., Mokni, and Mazerolle, F. (1996), "Void Ratio Evolution Inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography", Geotechnique, Vol.46, No.3, pp.529-546. https://doi.org/10.1680/geot.1996.46.3.529
  11. Finno, R. J., Harris, W. W., Mooney, M. A., and Viggiani, G. (1997), "Shear Bands in Plane Strain Compression of Loose sand", Geotechnique, Vol.47, No.1, pp.149-165. https://doi.org/10.1680/geot.1997.47.1.149
  12. Gylland, A. S., Jostad, H. P., and Nordal, S. (2014), "Experimental Study of Strain Localization in Sensitive Clays", Acta Geotechnica, Vol.9, pp.227-240. https://doi.org/10.1007/s11440-013-0217-8
  13. Hicher, P. Y., Wahyudi, H., and Tessier, D. (1994), "Microstructural Analysis of Strain Localisation in Clay", Computers and Geotechnics, Vol.16, pp.205-222. https://doi.org/10.1016/0266-352X(94)90002-7
  14. Jang, D. J. and Frost, J. D. (2000), "Use of Image Analysis to Study the Microstructure of a Failed Sand Specimen", Canadian Geotechnical Journal, Vol.37, pp.1141-1149. https://doi.org/10.1139/t00-031
  15. Jang, E. R., Chung, C. K., and Choo, Y. S. (2011), "Estimation of Spatial Deformation in Granular Soil Specimens by Plane Strain Test with Digital Image Analysis", Proceedings of the Twenty-first International Offshore and Polar Engineering Conference, pp.397-404.
  16. Kim, J. Y., Jang, E. R., Yune, C. Y., and Chung, C. K. (2011), "Internal Deformation of Soil during Consolidation in Radial Drainage Condition", International Symposium on Deformation Characteristics of Geomaterials, pp.1144-1149.
  17. Lin, H. and Penumadu, D. (2006), "Strain Localization in Combined Axial Torsional Testing on Kaolin Clay", Journal of Engineering Mechanics, Vol.132, No.5, pp.555-564. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(555)
  18. Oda, M. and Kazama, H. (1998), "Microstructure of Shear Bands and its Relation to the Mechanisms of Dilatancy and Failure of Dense Granular Soils", Geotechnique, Vol.48, No.4, pp.465-481. https://doi.org/10.1680/geot.1998.48.4.465
  19. Peters, J., Lade, P., and Bro, A. (1988), "Shear Band Formation in Triaxial and Planes Strain Tests", Advanced triaxial testing of soil and rock, ASTM, STP977.
  20. Rhee, Y. (1991), "Experimental Evaluation of Strain-softening behavior of Normally Consolidated Chicago Clays in Plane Strain Compression", Ph.D. Dissertation, Northwestern University, Evanston, Illinois.
  21. Roscoe, K. H. (1970), "The Influence of Strains in Soil Mechanics", Geotechnique, Vol.20, No.2, pp.129-170. https://doi.org/10.1680/geot.1970.20.2.129
  22. Saada, A. S., Bianchini, G. F., and Liang, L. (1994), "Cracks, Bifurcationand Shear Bands Propagation in Saturated Clays", Geotechnique, Vol.44, No.1, pp.35-64. https://doi.org/10.1680/geot.1994.44.1.35
  23. Wong, R. C. K. (2000), "Shear Deformation of Locked Sand in Triaxial Compression", Geotechnical Testing Journal, GTJODJ, Vol.23, No.2, pp.158-170. https://doi.org/10.1520/GTJ11040J
  24. White, D. J. and Take, W. A. (2003), "GeoPIV: Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing", Technical Report, Cambridge University Department of Engineering, Cambridge, UK.
  25. White, D. J., Take, W. A., and Bolton, M. D. (2003), "Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry", Geotechnique, Vol.53, No.7, pp.619-631. https://doi.org/10.1680/geot.2003.53.7.619