DOI QR코드

DOI QR Code

A Sensor Identification Scheme for Dynamic Interworking Between Personal Sensor Devices and a Smartphone

개인용 센서 기기와 스마트폰의 동적 연동을 위한 센서 식별 기법

  • 민홍 (호서대학교 컴퓨터정보공학부)
  • Received : 2015.09.14
  • Accepted : 2016.01.28
  • Published : 2016.02.29

Abstract

Several sensor devices have been developed for monitoring individual's health and status information and services which visualize customized information by associating applications running on smartphones with sensor devices also have been emerged. Though these applications provide similar information to a user, each sensor device has its own application caused by non-standardized packet formats. In this paper, we propose a sensor device identification for dynamic interworking between a smartphone and personal sensor devices. In the proposed scheme, we can use the same application which plays role of a client on the smartphone as changing sensor devices because server stores packet information of sensor devices.

개인의 건강 및 상태 정보를 모니터링하기 위한 다양한 센서 기기들이 개발되고 있으며, 스마트폰 상에서 동작하는 응용과 연동을 통해 개인화된 정보를 시각화하여 보여주는 서비스들이 등장하고 있다. 이러한 응용들은 유사한 정보를 사용자에게 제공하면서도 표준화되지 않은 패킷 구조로 인해 센서 기기마다 별도의 응용을 설치해야 하는 문제가 있다. 본 논문에서는 비표준화된 개인용 센서 기기들이 스마트폰과 동적으로 연동될 수 있는 센서 기기 식별 기법을 제안한다. 제안 기법은 센서 기기에 대한 패킷 정보를 서버에 저장하기 때문에 사용하는 센서가 변동되더라도 스마트폰 상에서 동작하는 클라이언트의 변경 없이 응용을 동작할 수 있는 장점이 있다.

Keywords

References

  1. B. Guo, et al., "Toward a Group-Aware Smartphone Sensing System," IEEE Pervasive Computing, Vol.13, No.4, pp.80-88, 2014. https://doi.org/10.1109/MPRV.2014.80
  2. H. Bojinov, D. Boneh, and Y. Michalevsky, "Mobile Device Identification via Sensor Fingerprinting," Technical reports (Stanford University), pp.1-14, 2014.
  3. P. Castillejo, et al., "Integration of wearable devices in a wireless sensor network for an E-health application," IEEE Wireless Communications, Vol.20, No.4, pp.38-49, 2013. https://doi.org/10.1109/MWC.2013.6590049
  4. N. Lee and J. Lee, "A Study on Mobile Personalized Healthcare Management System," The KIPS Transactions on Computer and Communication Systems, Vol.4, No.6, pp.197-204, 2015. https://doi.org/10.3745/KTCCS.2015.4.6.197
  5. Y. Kang and W. Ko, "Asynchronous Sensing Data Aggregation and Processing Mechanism for Internet of Things Environment," The KIPS Transactions on Computer and Communication Systems, Vol.3, No.11, pp.403-408, 2014. https://doi.org/10.3745/KTCCS.2014.3.11.403
  6. D. Lee, G. Bang, S. Han, and D. Choi, "A Design of U-Health System on Smart Phone Using ISO/IEEE 11073 PHD Standard," in Proceedings of the 2nd World Congress on Computing and Information Technology, pp.133-138. 2014.
  7. V. Hulipalled, et al., "DRSM: Data Reduction and Similarity Matching for Time Series Data Streams," in Proceedings of International Conference on Advances in Communication, Network, and Computing, pp.114-121, 2013.
  8. M. Najam, U. Younis, and R. Rasool, "Multi-byte Pattern Matching Using Stride-K DFA for High Speed Deep Packet Inspection," in Proceedings of IEEE 17th International Conference on Computational Science and Engineering, pp.547-553, 2014.
  9. S. Fatehpuria, et al., "A very unique, fast and efficient approach for pattern matching (the Jumping Algorithm)," in Proceedings of International Conference on Advanced Communication Control and Computing Technologies, pp.1241-1245, 2014.
  10. R. H. Vishwanath, et al., "Alternate Data Clustering for Fast Pattern Matching in Stream Time Series Data," Advances in Communication, Network, and Computing, Vol.108, No.1, pp.153-158, 2012. https://doi.org/10.1007/978-3-642-35615-5_22