DOI QR코드

DOI QR Code

SIFT 기술자를 이용한 얼굴 표정인식

Facial Expression Recognition Using SIFT Descriptor

  • 김동주 (동서대학교 컴퓨터공학부) ;
  • 이상헌 (대구경북과학기술원 IT융합연구부) ;
  • 손명규 (대구경북과학기술원 IT융합연구부)
  • 투고 : 2015.06.16
  • 심사 : 2015.09.09
  • 발행 : 2016.02.29

초록

본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

This paper proposed a facial expression recognition approach using SIFT feature and SVM classifier. The SIFT was generally employed as feature descriptor at key-points in object recognition fields. However, this paper applied the SIFT descriptor as feature vector for facial expression recognition. In this paper, the facial feature was extracted by applying SIFT descriptor at each sub-block image without key-point detection procedure, and the facial expression recognition was performed using SVM classifier. The performance evaluation was carried out through comparison with binary pattern feature-based approaches such as LBP and LDP, and the CK facial expression database and the JAFFE facial expression database were used in the experiments. From the experimental results, the proposed method using SIFT descriptor showed performance improvements of 6.06% and 3.87% compared to previous approaches for CK database and JAFFE database, respectively.

키워드

참고문헌

  1. P. Ekman and W. V. Friesen, "Constants across cultures in the face and emotion," Journal of Personality and Social Psychology, Vol.17, No.2, pp.124-129, 1971. https://doi.org/10.1037/h0030377
  2. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active shape models - their training and application," Computer Vision and Image Understanding, Vol.61, pp.38-59, 1995. https://doi.org/10.1006/cviu.1995.1004
  3. H. T. Le and N. T. Vo, "Face alignment using active shape model and support vector machine," International Journal of Biometrics and Bioinformatics, Vol.4, No.6, pp.224-234, 2012.
  4. David G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the International Conference on Computer Vision, Vol.2. pp.1150-1157, 1999.
  5. M. T. Carlos, P. B. Marcos, and B. A. Jesus, "Fused intra-bimodal face verification approach based on scaleinvariant feature transform and a vocabulary tree," Pattern Recognition Letters, Vol.36, pp.254-260, 2014. https://doi.org/10.1016/j.patrec.2013.08.016
  6. C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, Vol.20, No.3, pp.273-297, 1995. https://doi.org/10.1007/BF00994018
  7. T. Kanade, J. Cohn, and Y. Tian, "Comprehensive database for facial expression analysis," IEEE International Conference Automatic Face Gesture Recognition, pp.46-53, 2000.
  8. M. J. Lyons, J. Budynek, and S. Akamatsu, "Automatic classification of single facial images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.12, pp. 357-1362, 1999.
  9. C. Shan, S. Gong, and P. W. McOwan, "Facial expression recognition based on local binary patterns: A Comprehensive study," Image and Vision Computing, Vol.27, No.6, pp.803- 816, 2009. https://doi.org/10.1016/j.imavis.2008.08.005
  10. W. L. Chao, J. J. Ding, and J. Z. Liu, "Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection," Signal Processing, Vol.117, pp.1-10, 2015. https://doi.org/10.1016/j.sigpro.2015.04.007
  11. T. Jabid, M. H. Kabir, and O. Chae, "Robust facial expression recognition based on local directional pattern," ETRI Journal, Vol.32, No.5, pp.784-794, 2010. https://doi.org/10.4218/etrij.10.1510.0132
  12. F. Zhong and J. Zhang, "Face recognition with enhanced local directional patterns," Neurocomputing, Vol.119, No.7, pp.375-384, 2013. https://doi.org/10.1016/j.neucom.2013.03.020