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Abstract

Leucine rich repeat kinase 2 (LRRK2) is a highly promising target for Parkinson’s disease (PD) that affects millions

of people worldwide. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed

on a series of pyrrolopyrimidine-based selective LRRK2 kinase inhibitors. This study was performed to rationalize the

structural requirements responsible for the inhibitory activity of these compounds. A reliable 3D-QSAR model was

developed using comparative molecular field analysis (CoMFA) technique. The model produced statistically acceptable

results with a cross-validated correlation coefficient (q2) of 0.539 and a non-cross-validated correlation coefficient (r2) of

0.871. Robustness of the model was further evaluated by bootstrapping and progressive scrambling analysis. This work

could assist in designing more potent LRRK2 inhibitors.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurode-

generative disorder that affects millions of people

worldwide. Symptoms include muscle rigidity, tremors,

and changes in speech and gait. The cause and under-

lying disease mechanisms are not well understood[1].

Recent genome-wide association studies (GWAS) stud-

ies have identified leucine rich repeat kinase 2 (LRRK2)

as a highly promising target for PD[2,3]. Several genetic

variants in LRRK2 have been identified as having an

increased PD risk, indicating that it is important in the

cause and pathogenesis of PD. LRRK2 dysfunction/

dysregulation is involved in the development of PD[4,5].

Due to potential of disease modification, LRRK2 has

attracted the attention of pharmaceutical industry.

LRRK2 is a serine/threonine kinase and shares

sequence homology with leucine rich repeat kinase 1

(LRRK1) and receptor-interacting protein (RIP)

kinases[4,6]. The chronic nature of PD and aging patient

population, require highly selective inhibitors for excel-

lent safety profile and successful therapy. Recently, a

series of pyrrolopyrimidines has been reported as highly

selective LRRK2 kinase inhibitors[7]. However, a three-

dimensional quantitative structure-activity relationship

(3D-QSAR) analysis was not performed on these inhib-

itors to determine the relation between chemical struc-

tures and the inhibitory values. Our research group is

involved in molecular modeling studies[8-12]. Here, we

have carried out comparative molecular field analysis

(CoMFA) to identify the key structural elements that are

required in the rational design of novel LRRK2 kinase

inhibitors.

2. Methodology

2.1. Data Set

A data set of 37 pyrrolopyrimidines possessing

LRRK2 kinase inhibitory activity was collected[7]. Activ-

ity values were reported as IC50 values. These inhibitory

values were converted into pIC50 values for 3D-QSAR

analysis. Activity (pIC50) values were employed as

dependent variables for deriving CoMFA model. The

extracted co-crystallized ligand (compound 8) was

used as template to construct and align the 3D struc-

tures of other data set compounds. All structures were

sketched using SKETCH function of SYBYL-X2.0[13].
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Table 1. Chemical structures and biological activities of pyrrolopyrimidine-based LRRK2 kinase inhibitors

Compound R1 R2 IC50 (nM) pIC50

1 16 7.796

2 69 7.161

3 6 8.222

4 8 8.097

5* 115 6.939

6 5 8.301

7 20 7.699

8 3 8.523

9 1830 5.738
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Table 1. Continued

Compound R1 R2 IC50 (nM) pIC50

10 79 7.102

11 393 6.406

12 95 7.022

13 9 8.046

14 28 7.553

15 8 8.097

16 3 8.523

17* 117 6.932

18 80 7.097
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Table 1. Continued

Compound R1 R2 IC50 (nM) pIC50

19 9 8.046

20* 686 6.164

21* 2243 5.649

22 12 7.921

23 53 7.276

24 18 7.745

25* 914 6.039

26 18 7.745

27 7 8.155

28 42 7.377
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Table 1. Continued

Compound R1 R2 IC50 (nM) pIC50

29 5 8.301

30 37 7.432

31 20 7.699

32 8 8.097

33 204 6.690

34 111 6.955

35 2331 5.633

36 139 6.857

37 222 6.654

*Compounds are considered as outliers.
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Partial atomic charges were calculated by the Gasteiger-

Hückel method. Energy minimizations were performed

using the Tripos force field with a distance-dependent

dielectric and the Powell conjugate gradient algorithm.

The minimized structures were aligned to the template

compound using common substructure-based alignment

method. Structures and activities of the data set com-

pounds are listed in Table 1.

2.2. CoMFA 

CoMFA technique is based on the hypothesis that

changes in the inhibitory activity of compounds are

related to the variations in the steric and electrostatic

fields[14]. The Lennard-Jones potential terms and Cou-

lombic terms represent steric and electrostatic fields

respectively. SYBYL-X2.0 was used for CoMFA cal-

culations. Potential fields for all compounds were deter-

mined at each lattice intersection of a regularly spaced

grid of 2.0 Å. An sp3 hybridized carbon probe atom car-

rying +1 charge and van der Waals radius of 1.52 Å was

used for the calculation of interaction fields. Energy cut-

off value of 30 kcal mol-1 was selected for both steric

and electrostatic fields. 

Partial least squares (PLS) regression algorithm was

employed for structural parameters and inhibitory activ-

ity values[15]. Activity (pIC50) values were used as

dependent variables whereas CoMFA descriptors were

used as independent variables in the PLS analysis. The

leave-one-out (LOO) cross-validation was performed to

obtain cross-validated correlation coefficient (q2), opti-

mal number of components (NOC) and standard error

of prediction (SEP). Non-cross-validated correlation

coefficient (r2), standard error of estimate (SEE) and F-

test value (F) were obtained by non-cross-validated

analysis. CoMFA model was further validated by boot-

strapping analysis[16] and progressive scrambling. Boot-

strapping analysis was carried out for 1000 runs while

100 independent scramblings were performed with a

maximum of 10 bins and a minimum of 2 bins. 

3. Results and Discussion

3.1. CoMFA Model

A series of pyrrolopyrimidine-based LRRK2 kinase

inhibitors was used to develop a 3D-QSAR model.

Whole data set was employed for developing CoMFA

model. All compounds were aligned over the template

(compound 8) using common substructure alignment

method. Alignment of data set compounds are shown in

Fig. 1. Data set was not split into training and test sets

during model generation due to less number of com-

pounds. During the development of CoMFA model, five

compounds (5, 17, 20, 21, and 25) were removed from

data set as outliers based on the high residual values.

A statistically acceptable CoMFA model was devel-

oped. Statistical values for the model are listed in Table

2. Model showed a q2 value of 0.539 with 4 compo-

nents. The non-cross-validated analysis generated r2,

SEE and F values of 0.871, 0.297 and 40.371, respec-

Table 2. Statistical parameters of the CoMFA model

Parameters CoMFA

q2 0.539

NOC 4

SEP 0.561

r2 0.871

SEE 0.297

F 40.371

BS-r2 0.919

BS-sd 0.039

Q2 0.403

Steric contribution 58.4

Electrostatic contribution 41.6

Note: q2 is cross-validated correlation coefficient, NOC is

number of components, SEP is standard error of prediction,

r2 is non-cross-validated correlation coefficient, SEE is

standard error of estimation; F is F-test value, BS-r2 is

bootstrapping r2 mean, BS-SD is bootstrapping standard

deviation, Q2 is corrected q2 dependency.

Fig. 1. Common substructure-based alignment of data set

compounds using compound 8 as a template.



J. Chosun Natural Sci., Vol. 9, No. 1, 2016

Comparative Molecular Field Analysis of Pyrrolopyrimidines as LRRK2 Kinase Inhibitors 7

tively. The steric and electrostatic contributions were

58.4% and 41.6%, respectively. Actual and predicted

activity values along with the residual values for data

set compounds are given in Table 3. The scatter plot for

actual versus predicted activity values is displayed in

Fig. 2. Predicted activities are in accordance with the

experimental values indicating that a reliable CoMFA

model was developed.

3.2. CoMFA Contour Maps 

One of the attractive features of 3D-QSAR modeling

is the visualization of information content of the derived

models by contour maps. These maps indicate the

regions in 3D space around the compounds where var-

iations in the fields are predicted to either enhance or

reduce the activity. The contour maps of different fields

are shown with the template molecule (compound 8) in

Fig. 3 and 4.

Steric contour map is exhibited in Fig. 3. Green con-

tours represent favorable regions while yellow contours

represent unfavorable regions for the substitution of

bulky groups. Green contours observed near R1 substi-

Table 3. Actual and predicted activity values with residuals of the data set compounds 

Compound Actual pIC50

CoMFA

Predicted pIC50 Residual

1 7.796 7.245 0.551

2 7.161 7.106 0.055

3 8.222 7.371 0.851

4 8.097 8.091 0.006

6 8.301 8.482 -0.181

7 7.699 8.211 -0.513

8 8.523 7.995 0.528

9 5.738 6.169 -0.432

10 7.102 6.973 0.129

11 6.406 6.144 0.262

12 7.022 6.984 0.038

13 8.046 7.927 0.119

14 7.553 7.592 -0.040

15 8.097 7.918 0.179

16 8.523 8.152 0.371

18 7.097 7.774 -0.677

19 8.046 8.280 -0.234

22 7.921 8.081 -0.161

23 7.276 7.939 -0.663

24 7.745 7.506 0.239

26 7.745 7.870 -0.125

27 8.155 7.708 0.447

28 7.377 7.622 -0.246

29 8.301 8.067 0.234

30 7.432 7.526 -0.094

31 7.699 7.438 0.261

32 8.097 8.096 0.001

33 6.690 6.739 -0.048

34 6.955 7.167 -0.213

35 5.633 5.743 -0.111

36 6.857 6.732 0.125

37 6.654 6.574 0.080
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tution indicated that bulky groups in this region are

favorable for improving the inhibitory activity. This

could be the possible reason for better inhibitory activity

of compound 8 as compared to compound 5. Due to the

same possible reason, compound 32 possess higher

activity than compound 26. 

Electrostatic contour map is exhibited in Fig. 4. Blue

contours represent regions where electropositive substi-

tutions are favored while red contours represent favora-

ble regions for electronegative substitutions to improve

the activity. A large blue contour observed near R1 sub-

stitution indicated that electropositive groups at that

position could enhance the activity. This might be the

reason for higher activity of compound 27 than com-

pound 28. Also, compound 1 demonstrates better inhib-

itory activity as compared to compounds 11 and 12

because of the same possible reason. 

4. Conclusions

In this work, a CoMFA model was developed for a

series of pyrrolopyrimidine-based LRRK2 kinase inhib-

itors. Model produced statistically reliable results in

terms of q2 and r2 values. Robustness of model was fur-

ther validated by bootstrapping and progressive sam-

pling analyses. Analysis of contour maps suggested

regions for structural modification to enhance the activ-

ity of compounds. Bulky groups with electropositive

properties are desirable at R1 substitution for improving

the inhibitory potency. The information provided by the

contour maps could be utilized to design more potent

LRRK2 kinase inhibitors. 
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