DOI QR코드

DOI QR Code

First Report of Post-Harvest Fruit Rot of Aronia melanocarpa Caused by Fusarium tricinctum in Korea

  • Lee, Hye Won (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Nguyen, Thi Thuong Thuong (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University)
  • 투고 : 2016.03.22
  • 심사 : 2016.03.24
  • 발행 : 2016.03.31

초록

Black chokeberry, Aronia melanocarpa (Michx.) Elliott, is commonly used as a source of jam and jelly in Korea and worldwide. A fungal isolate EML-CCB6 was isolated from the decaying fruit of black chokeberry. Based on the morphological characteristics and rDNA internal transcribed spacer sequence analysis, the isolate was identified as Fusarium tricinctum (Corda) Sacc. This is the first report of post-harvest fruit rot of black chokeberry caused by F. tricinctum in Korea.

키워드

참고문헌

  1. Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: a review. Compr Rev Food Sci Food Saf 2012;11:471-89. https://doi.org/10.1111/j.1541-4337.2012.00198.x
  2. Kim NY, Lee YD, Cho SC, Shin YC, Lee HY. Enhancement of anti-inflammation effect by fermentation process in Aronia melanocarpa (Michx.) Elliott extract. Korean J Med Crop Sci 2014:22;475-82. https://doi.org/10.7783/KJMCS.2014.22.6.475
  3. Ho GT, Braunlich M, Austarheim I, Wangensteen H, Malterud KE, Slimestad R, Barsett H. Immunomodulating activity of Aronia melanocarpa polyphenols. Int J Mol Sci 2014; 15:11626-36. https://doi.org/10.3390/ijms150711626
  4. Park S, Kim JI, Lee I, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Han SZ, Park MS. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses. Biochem Biophys Res Commun 2013;440:14-9. https://doi.org/10.1016/j.bbrc.2013.08.090
  5. Genchev R, Angelova G, Laskova I, Gotcheva V, Angelov A. Mycoflora of fresh chokeberry (Aronia melanocarpa) and ochratoxin-producing ability of Penicillium isolates. Qual Assur Saf Crops Foods 2015;7:123-31. https://doi.org/10.3920/QAS2012.0198
  6. Kwon JH, Kang DW, Lee SY. First report of brown leaf spot caused by Alternaria alternata on Aronia melanocarpa in Korea. Plant Dis 2016. http://dx.doi.org/10.1094/PDIS-08-15-0852-PDN.
  7. Leslie JF, Summerell BA. The Fusarium laboratory manual. Ames: Blackwell Publishing; 2006.
  8. Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, Alekhina IA, Nirenberg HI. Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex - a polyphasic approach. Mycol Res 2002;106:655-69. https://doi.org/10.1017/S0953756202006020
  9. Kristensen R, Torp M, Kosiak B, Holst-Jensen A. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol Res 2005;109:173-86. https://doi.org/10.1017/S0953756204002114
  10. Watanabe M, Yonezawa T, Lee K, Kumagai S, Sugita-Konishi Y, Goto K, Hara-Kudo Y. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol Biol 2011;11:322. https://doi.org/10.1186/1471-2148-11-322
  11. O'Donnell K, Sutton DA, Rinaldi MG, Gueidan C, Crous PW, Geiser DM. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J Clin Microbiol 2009;47:3851-61. https://doi.org/10.1128/JCM.01616-09
  12. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2003;30:2725-9.
  15. Nesic K, Ivanovic S, Nesic V. Fusarial toxins: secondary metabolites of Fusarium fungi. Rev Environ Contam Toxicol 2014; 228:101-20.
  16. Bamburg JR, Strong FM. Mycotoxins of the trichothecane family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochemistry 1969;8:2405-10. https://doi.org/10.1016/S0031-9422(00)88162-5
  17. Burmeister HR. T-2 toxin production by Fusarium tricinctum on solid substrate. Appl Microbiol 1971;21:739-42.
  18. Ueno Y, Sawano M, Ishii K. Production of Trichothecene mycotoxins by Fusarium species in shake culture. Appl Microbiol 1975;30:4-9.
  19. Tejesvi MV, Segura DR, Schnorr KM. Sandvang D, Mattila S, Olsen PB, Neve S, Kruse T, Kristensen H, Pirttila AM. An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Divers 2013;60: 153-59. https://doi.org/10.1007/s13225-013-0227-8
  20. Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderon AI. A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot (Tokyo) 2015;68:197-200. https://doi.org/10.1038/ja.2014.129

피인용 문헌

  1. Morphological and molecular characterization of Fusarium tricinctum causing postharvest fruit rot of pumpkin in Korea vol.84, pp.6, 2018, https://doi.org/10.1007/s10327-018-0803-6