A NOTE ON THE VALUE DISTRIBUTION
 OF $f^{2}\left(f^{\prime}\right)^{n}$ FOR $n \geq 2$

Yan Jiang

Abstract. Let f be a transcendental meromorphic function in the complex plane \mathbb{C}, and a be a nonzero constant. We give a quantitative estimate of the characteristic function $T(r, f)$ in terms of $N\left(r, 1 /\left(f^{2}\left(f^{\prime}\right)^{n}-\right.\right.$ $a)$), which states as following inequality, for positive integers $n \geq 2$,

$$
T(r, f) \leq\left(3+\frac{6}{n-1}\right) N\left(r, \frac{1}{a f^{2}\left(f^{\prime}\right)^{n}-1}\right)+S(r, f)
$$

1. Introduction and results

Let f be a transcendental meromorphic function in the complex plane \mathbb{C}. In this article, the standard symbols $T(r, f), N(r, f), \bar{N}(r, f), m(r, f), S(r, f)$ are due to Nevanlinna [4]. Particularly, $S(r, f)$ is used to denote an error term $v(r)$ satisfying $v(r)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of finite linear measure. A small function (with respect to f) means a function $\varphi(z)$ meromorphic in \mathbb{C} satisfying $T(r, \varphi)=S(r, f)$. A meromorphic function f is rational if and only if $T(r, f)=O(\log r)$ [3].
The First Fundamental Theorem [3]. Let f be a non-constant meromorphic function. Then

$$
T\left(r, \frac{1}{f-a}\right)=T(r, f)+\varepsilon(r, a)
$$

for each complex number $a \neq \infty$, where $\varepsilon(r, a)=O(1)$ as $r \rightarrow \infty$.
The Second Fundamental Theorem [3]. Suppose that $f(z)$ is a meromorphic function that is not identically constant, and let a_{1}, \ldots, a_{q} be distinct complex numbers, one of which may be equal to ∞. Then

$$
\sum_{v=1}^{q} m\left(r, a_{v}\right) \leq 2 T(r, f)-N_{1}(r)+S(r, f)
$$

Received May 21, 2014; Revised December 27, 2014.
2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. transcendental meromorphic function, deficiency.

This theorem also implies the following inequality:

$$
\begin{equation*}
(q-2) T(r, f) \leq \sum_{v=1}^{q} \bar{N}\left(r, a_{v}\right)+S(r, f) \tag{1}
\end{equation*}
$$

The quantity

$$
\delta(a, f)=\liminf _{r \rightarrow \infty} \frac{m(r, 1 /(f-a))}{T(r, f)}=1-\limsup _{r \rightarrow \infty} \frac{N(r, 1 /(f-a))}{T(r, f)}
$$

is called the deficiency of f at the point a. Note that $0 \leq \delta(a, f) \leq 1$.
In the last decades, a flock of articles on the topic of value distribution of $f^{l}\left(f^{(k)}\right)^{n}$ were sprang up, where l, n, k are positive integers. All of these fruits make this topic surprisingly developed, some results are even very concise and simple, for example, Lahiri and Dewan [7] proved for $l \geq 3$,

$$
T(r, f) \leq \frac{1}{l-2} N\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-a}\right)+S(r, f)
$$

Tse and Yang [9], Li and Yang [8], Alotaibi [2] and Wang [10] gave different estimates when $l=1$, but with the restriction to n or some other additional conditions. Zhang [13] obtained that the inequality $T(r, f)<6 N\left(r, 1 /\left(f^{2} f^{\prime}-\right.\right.$ $1))+S(r, f)$ holds. Later on, Huang and Gu [5] extended function $f^{2} f^{\prime}$ to higher derivatives as follows.

Theorem A ([5, 13]). Let f be a meromorphic and transcendental function in the plane and let k be a positive integer. Then

$$
T(r, f) \leq 6 N\left(r, \frac{1}{f^{2} f^{(k)}-1}\right)+S(r, f)
$$

There are also papers relating another general form of $f^{l}\left(f^{\prime}\right)^{n}$. For $l \geq 3$, a result was given by Lahiri and Dewan [7, Theorem 3.2]. For $l=1$, Alotaibi [1, 2] discussed this case in separate discussion on $n=1$ and $n>1$. For the case $l=2, n=1$, the estimate is as Theorem A $[5,13]$ showed. However we noticed that the discuss on the forms of $f^{2}\left(f^{\prime}\right)^{n}$ are less involved all the years. But there are still some related results with some additional conditions. For instance, Yang and $\mathrm{Hu}[11$, Theorem 2] proved that, for positive integers k, l, n and a nonzero finite complex number $a, f^{2}\left(f^{\prime}\right)^{n}-a$ has infinitely many zeros if $\delta(0, f)>3 /(3(l+n)+1)$, where $\delta(0, f)$ is the deficiency of f at the value 0 . In fact, the case $n=1$ is usually discussed as a special case to deal with, since the method to gain an estimate is always different from that for the case $n>1$. This phenomenon can be discovered from Alotaibi's two papers [1, 2] or Zhang and Huang's papers [5, 13].

We set our aim at removing the additional conditions to get an estimate of $T(r, f)$ with respect to the function $f^{2}\left(f^{\prime}\right)^{n}$ for $n>2$. We tried on it by improving the method due to Li and Yang [8], in their paper, they gave an estimate of $T(r, f)$ with respect to $f\left(f^{(k)}\right)^{n}$ for $n>2$.

Theorem 1.1. Let f be a transcendental meromorphic function in $\mathbb{C}, n(\geq 2)$ be a positive integer and $a(\not \equiv 0)$ be a small function with respect to f. Then

$$
\begin{equation*}
T(r, f) \leq\left(3+\frac{6}{n-1}\right) N\left(r, \frac{1}{a f^{2}\left(f^{\prime}\right)^{n}-1}\right)+S(r, f) \tag{2}
\end{equation*}
$$

Theorem 1.2. Under the conditions of Theorem 1.1, we have

$$
\delta\left(a, f^{2}\left(f^{\prime}\right)^{n}\right) \leq 1-\frac{n-1}{6(n+1)^{2}}
$$

Since $a(\not \equiv 0)$ is a small function with respect to f, the notation $\delta\left(a, f^{2}\left(f^{\prime}\right)^{n}\right)$ can be understood as $\delta\left(0, f^{2}\left(f^{\prime}\right)^{n}-a\right)$.

2. Lemmas

We need two lemmas to proceed our proofs. The first lemma is a simple result from another paper partly contributed by the author [6].

Lemma 2.1 ([6]). Let f be a transcendental meromorphic function in the plane. Then the differential monomial

$$
\nu=f^{l}\left(f^{(k)}\right)^{n}
$$

is transcendental, where l, n and k are positive integers.
Lemma 2.2 ([12]). Let f be a meromorphic function satisfying $f^{(k)} \not \equiv 0$. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

3. Proof of Theorem 1.1

Set $\psi=a f^{2}\left(f^{\prime}\right)^{n}-1$. Then

$$
\psi^{\prime}=a\left(f^{\prime}\right)^{n}\left(\frac{a^{\prime}}{a} f^{2}+2 f f^{\prime}+n f^{2} \frac{f^{\prime \prime}}{f^{\prime}}\right)=a\left(f^{\prime}\right)^{n} F
$$

where $F=-h f^{2}+2 f^{\prime} f, h=-\frac{a^{\prime}}{a}-n \frac{f^{\prime \prime}}{f^{\prime}}$.
Except for zeros and poles of $a=a(z)$, any zero of f^{\prime} can only probably be a simple pole of F, any pole of f is also a pole of F. Then

$$
N\left(r, \frac{1}{\psi^{\prime}}\right) \geq N\left(r, \frac{1}{a\left(f^{\prime}\right)^{n}}\right)+N\left(r, \frac{1}{F}\right)-\bar{N}\left(r, \frac{1}{f^{\prime}}\right)
$$

which implies

$$
\begin{align*}
N\left(r, \frac{1}{F}\right) & \leq N\left(r, \frac{1}{\psi^{\prime}}\right)-N\left(r, \frac{1}{a\left(f^{\prime}\right)^{n}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right) \\
& \leq N\left(r, \frac{1}{\psi^{\prime}}\right)-n N\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{3}
\end{align*}
$$

Since f is nonconstant, then f^{\prime} can be written by

$$
f^{\prime}=\frac{1}{2}\left(\frac{F}{f}+h f\right) .
$$

Set $G=F / f=-h f+2 f^{\prime}$. Assume $a \neq 0, \infty$ at the poles of f, then after some simple calculations, we know that poles of f can not be zeros of G since poles of f are also poles of G, which means poles of f can not be zeros of G. Therefore

$$
\begin{equation*}
N\left(r, \frac{1}{G}\right) \leq N\left(r, \frac{1}{F}\right)+S(r, f) \tag{4}
\end{equation*}
$$

Differentiating f^{\prime} to be

$$
f^{\prime \prime}=\frac{1}{2}\left(\left(h^{\prime}+\frac{1}{2} h^{2}\right) f+G^{\prime}+\frac{1}{2} h G\right) .
$$

We write $f^{\prime \prime}=\frac{1}{2}(D f+E)$, where $E=G^{\prime}+\frac{1}{2} h G, D=h^{\prime}+\frac{1}{2} h^{2}$, and D is a differential polynomial in h with multiplicities of poles at most 2. Then

$$
\left(\frac{f^{\prime \prime}}{f^{\prime}} h-D\right) f=E-\frac{f^{\prime \prime}}{f^{\prime}} G .
$$

Set

$$
E-\frac{f^{\prime \prime}}{f^{\prime}} G=G G^{*}
$$

where

$$
\begin{align*}
G^{*} & =\frac{E}{G}-\frac{f^{\prime \prime}}{f^{\prime}} \\
& =\frac{G^{\prime}}{G}+\frac{1}{2} h-\frac{f^{\prime \prime}}{f^{\prime}} \\
& =\frac{G^{\prime}}{G}+\left(\frac{1}{2}+\frac{1}{n}\right) h+\frac{a^{\prime}}{n a} . \tag{5}
\end{align*}
$$

Let $N_{1)}(r, 1 / f)$ denote the counting function with respect to the simple zeros of f, then any simple zero of f is not a pole of $\left(\frac{f^{\prime \prime}}{f^{\prime}} h-D\right)$. Hence

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{f}\right) & \leq \bar{N}\left(r, \frac{1}{G G^{*}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G^{*}}\right)+S(r, f) . \tag{6}
\end{align*}
$$

Since $h=-a^{\prime} / a-n f^{\prime \prime} / f^{\prime}$, by the definition of G^{*} in (5), we know that the poles of G^{*} come from the zeros of G, or the poles of G or h with the multiplicities at most 1. Nevertheless, $G=-h f+2 f^{\prime}$, poles of G come from
poles of f and h. Poles of h come from zeros or poles of f^{\prime}. Because $m\left(r, G^{*}\right)=$ $S(r, G)=S(r, f)$, then

$$
\begin{equation*}
T\left(r, G^{*}\right) \leq N\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}(r, f)+S(r, f) \tag{7}
\end{equation*}
$$

It follows from inequalities (6) and (7) that

$$
\begin{equation*}
\bar{N}_{1)}\left(r, \frac{1}{f}\right) \leq 2 N\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}(r, f)+S(r, f) \tag{8}
\end{equation*}
$$

Since
(9) $\bar{N}\left(r, \frac{1}{\psi+1}\right)=\bar{N}\left(r, \frac{1}{a f^{2}\left(f^{\prime}\right)^{n}}\right) \leq N_{1)}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)$.

Note that ψ is transcendental by Lemma 2.1, then it follows from Lemma 2.2 that

$$
\begin{equation*}
N\left(r, \frac{1}{\psi^{\prime}}\right) \leq N\left(r, \frac{1}{\psi}\right)+\bar{N}(r, f)+S(r, f) \tag{10}
\end{equation*}
$$

By inequalities (1) and (8), (9), (3), (4), (10), we have for $n \geq 2$,

$$
\begin{aligned}
T(r, \psi) & \leq \bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi+1}\right)+\bar{N}(r, \psi)+S(r, \psi) \\
& \leq \bar{N}\left(r, \frac{1}{\psi}\right)+2 N\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}(r, f)+S(r, f) \\
& \leq 2 N\left(r, \frac{1}{\psi^{\prime}}\right)+\bar{N}\left(r, \frac{1}{\psi}\right)+2(2-n) N\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}(r, f)+S(r, f) \\
(11) \quad & \leq 3 N\left(r, \frac{1}{\psi}\right)+4 \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
T\left(r, f^{2}\left(f^{\prime}\right)^{n}\right) & \geq N\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)=2 N(r, f)+n N\left(r, f^{\prime}\right) \\
& =(2+n) N(r, f)+n \bar{N}(r, f) \\
& \geq 2(n+1) \bar{N}(r, f)
\end{aligned}
$$

Then it follows from the inequality (11) that

$$
\begin{equation*}
T\left(r, f^{2}\left(f^{\prime}\right)^{n}\right) \leq\left(3+\frac{6}{n-1}\right) N\left(r, \frac{1}{\psi}\right)+S(r, f) \tag{12}
\end{equation*}
$$

Since $m\left(r, f^{(k)} / f\right)=S(r, f)$, then

$$
\begin{aligned}
m\left(r,\left(f^{\prime}\right)^{n}\right) & =\frac{n}{n+2} m\left(r,\left(f^{\prime}\right)^{n+2}\right) \\
& \leq \frac{n}{n+2} m\left(r,\left(\frac{f^{\prime}}{f}\right)^{2}\right)+\frac{n}{n+2} m\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)+O(1) \\
& \leq \frac{n}{n+2} m\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)+S(r, f) .
\end{aligned}
$$

In addition,

$$
\begin{align*}
N\left(r,\left(f^{\prime}\right)^{n}\right) & =N\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)-2 N(r, f) \\
& \leq N\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)-2 \bar{N}(r, f) . \tag{14}
\end{align*}
$$

By inequalities (13) and (14)

$$
\begin{aligned}
T(r, f) & =\frac{1}{2} T\left(r, f^{2}\right) \leq T\left(r,\left(f^{\prime}\right)^{n}\right)+T\left(r, f^{2}\left(f^{\prime}\right)^{n}\right) \\
& \leq T\left(r, f^{2}\left(f^{\prime}\right)^{n}\right)
\end{aligned}
$$

Hence, it follows from inequality (12) that

$$
T(r, f) \leq\left(3+\frac{6}{n-1}\right) N\left(r, \frac{1}{\psi}\right)+S(r, f)
$$

4. Proof of Theorem 1.2

Set $\varphi=\frac{1}{a} f^{2}\left(f^{\prime}\right)^{n}-1$. Since

$$
\begin{gathered}
T(r, f) \leq\left(3+\frac{6}{n-1}\right) N\left(r, \frac{1}{a \varphi}\right)+S(r, f) . \\
T(r, a \varphi) \leq(2 n+2) T(r, f)+S(r, f)
\end{gathered}
$$

$$
\begin{equation*}
\leq \frac{6(n+1)^{2}}{n-1} N\left(r, \frac{1}{a \varphi}\right)+S(r, f) \tag{15}
\end{equation*}
$$

We have

$$
N\left(r, \frac{1}{a \varphi}\right) \geq \frac{n-1}{6(n+1)^{2}} T(r, a \varphi)-S(r, f)
$$

Since

$$
f^{2}=(a \varphi+a)\left(f^{\prime}\right)^{-n}
$$

by the First Fundamental Theorem,

$$
\begin{aligned}
T(r, f)=\frac{1}{2} T\left(r, f^{2}\right) & \leq T\left(r,\left(f^{\prime}\right)^{n}\right)+T(r, a \varphi)+S(r, f) \\
& \leq O(T(r, a \varphi))
\end{aligned}
$$

Therefore,

$$
\liminf _{r \rightarrow \infty} \frac{S(r, f)}{T(r, a \varphi)}=\liminf _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)} \frac{T(r, f)}{T(r, a \varphi)}=0
$$

By the definition of deficiency, we deduce that

$$
\begin{aligned}
\delta\left(a, f^{2}\left(f^{\prime}\right)^{n}\right)=\delta(0, a \varphi) & =1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{a \varphi}\right)}{T(r, a \varphi)} \\
& \leq 1-\limsup _{r \rightarrow \infty} \frac{\frac{n-1}{6(n+1)^{2}} T(r, a \varphi)-S(r, f)}{T(r, a \varphi)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 1-\frac{n-1}{6(n+1)^{2}}+\liminf _{r \rightarrow \infty} \frac{S(r, f)}{T(r, a \varphi)} \\
& =1-\frac{n-1}{6(n+1)^{2}}
\end{aligned}
$$

Acknowledgement. The author is very appreciate to Professor Toshiyuki Sugawa and every member in the seminars for their valuable suggestions and comments, which helped a lot in improving this paper.

References

[1] A. Alotaibi, On the zeros of aff $f^{(k)}-1$, Complex Var. Theory Appl. 49 (2004), no. 13, 977-989.
[2] _ On the zeros of $a f\left(f^{(k)}\right)^{n}-1$ for $n \geq 2$, Comput. Methods Funct. Theory 4 (2004), no. 1, 227-235.
[3] A. A. Goldberg and V. I. Ostrovskii, Value distribution of meromorphic functions, vol. 236, American Mathematical Society, Providence, RI, 2008.
[4] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964.
[5] X. J. Huang and Y. X. Gu, On the value distribution of $f^{2} f^{(k)}$, J. Aust. Math. Soc. 78 (2005), no. 1, 17-26.
[6] Y. Jiang and B. Huang, A note on the value distribution of $f^{l}\left(f^{(k)}\right)^{n}$, in submission.
[7] I. Lahiri and S. Dewan, Inequalities arising out of the value distribution of a differential monomial, J. Inequal. Pure Appl. Math. 4 (2003), no. 2, Article 27, 6 pp. (electronic).
[8] P. Li and C. C. Yang, On the value distribution of a certain type of differential polynomials, Monatsh. Math. 125 (1998), no. 1, 15-24.
[9] C. K. Tse and C. C. Yang, On the value distribution of $f^{l}\left(f^{(k)}\right)^{n}$, Kodai Math. J. 17 (1994), no. 1, 163-169.
[10] J. P. Wang, On the zeros of $f^{n}(z) f^{(k)}(z)-c(z)$, Complex Var. Theory Appl. 48 (2003), no. 8, 695-703.
[11] C. C. Yang and P. C. Hu, On the value distribution of $f f^{(k)}$, Kodai Math. J. 19 (1996), no. 2, 157-167.
[12] C. C. Yang and H. X. Yi, A unicity theorem for meromorphic functions with deficient values, Acta Math. Sinica 37 (1994), no. 1, 62-72.
[13] Q. D. Zhang, A growth theorem for meromorphic function, J. Chengdu Inst. Meteor. 20 (1992), 12-20.

Graduate School of Information Sciences
Tohoku University
6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
E-mail address: jiang@ims.is.tohoku.ac.jp; gesimy038@tom.com

