DOI QR코드

DOI QR Code

Dihydrobenzofuran Neolignans Isolated from Euonymus alatus Leaves and Twigs Attenuated Inflammatory Responses in the Activated RAW264.7 Macrophage Cells

  • Kim, Na-Hyun (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology) ;
  • Yang, Min Hye (College of Pharmacy, Pusan National University) ;
  • Heo, Jeong-Doo (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology) ;
  • Sung, Sang Hyun (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Jeong, Eun Ju (Department of Agronomy & Medicinal Plant Resources, College of Life Sciences and Natural Resources, Gyeongnam National University of Science and Technology)
  • Received : 2015.08.10
  • Accepted : 2015.09.16
  • Published : 2016.03.31

Abstract

Anti-inflammatory effects of dihydrobenzofuran neolignans isolated from Euonymus alatus leaves and twigs were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Six neolignans, (+)-simulanol (1), (+)-dehydrodiconiferyl alcohol (2), (-)-simulanol (3), (-)-dehydrodiconiferyl alcohol (4), (+)-dihydrodehyrodiconiferyl alcohol (5), threo-buddlenol B (6) effectively inhibited the production of nitric oxide (NO) induced by LPS, and the activity of iNOS. (-)-dehydrodiconiferyl alcohol (4), which showed the most potent inhibitory activity, attenuated the activity of iNOS enzyme and also the expression of iNOS and COX-2 proteins. The subsequent production of pro-inflammatory cytokines, interleukin-$1{\beta}$, interleukin-6, tumor necrosis factor-${\alpha}$ and prostaglandin E2 were also inhibited by the pretreatment of RAW264.7 cells with (-)-dehydrodiconiferyl alcohol (4). These neolignans are thought to contribute to anti-inflammatory effects of E. alatus, and expected to be potential candidates to prevent/treat inflammation-related diseases.

Keywords

References

  1. Kaplanski, G.; Marin, V.; Montero-Julian, F.; Mantovani, A.; Farnarier, C. Trends Immunol. 2003, 24, 25-29. https://doi.org/10.1016/S1471-4906(02)00013-3
  2. Adams, D. O.; Hamilton, T. A. Annu. Rev. Immunol. 1984, 2, 283-318. https://doi.org/10.1146/annurev.iy.02.040184.001435
  3. Jeong, E. J.; Yang, H.; Kim, S. H.; Kang, S. Y.; Sung, S. H.; Kim, Y. C. Food Chem. Toxicol. 2011, 49, 1394-1398. https://doi.org/10.1016/j.fct.2011.03.028
  4. Jeong, E. J.; Cho, J. H.; Sung, S. H.; Kim, S. Y.; Kim, Y. C. Bioorg. Med. Chem. Lett. 2011, 15, 2283-2286.
  5. Akihisa, T.; Yamamoto, K.; Tamura, T.; Iida, T.; Nambara, T.; Chang, F. C. Chem. Pharm. Bull. 1992, 40, 789-791. https://doi.org/10.1248/cpb.40.789
  6. De Fatima Silva, G. D.; Duarte, L. P.; Da Silva Paes, H. C.; De Sousa, J. R.; Nonato, M. C.; Portezani, P. J.; Mascarenhas, Y. P. J. Braz. Chem. Soc. 1998, 9, 461-464. https://doi.org/10.1590/S0103-50531998000500009
  7. Liu, C. M.; Wang, H. X.; Wei, S. L.; Gao, K. J. Nat. Prod. 2008, 71, 789-792. https://doi.org/10.1021/np070618n
  8. Fang, J. M.; Lee, C. K.; Cheng, Y. S. Phytochemistry 1992, 31, 3659-3661. https://doi.org/10.1016/0031-9422(92)83753-L
  9. Yang, Y. P.; Cheng, M. J.; Teng, C. M.; Chang, Y. L.; Tsai, I. L.; Chen, I. S. Phytochemistry 2002, 61, 567-572. https://doi.org/10.1016/S0031-9422(02)00268-6
  10. Meng, J.; Jiang, T.; Bhatti, H. A.; Siddiqui, B. S.; Dixon, S.; Kilburn, J. D. Org. Biomol. Chem. 2010, 8, 107-113. https://doi.org/10.1039/B918179B
  11. Lourith, N.; Katayama, T.; Suzuki, T. J. Wood Sci. 2005, 51, 370-378. https://doi.org/10.1007/s10086-004-0660-0
  12. Matsuda, S.; Kadota, S.; Tai, T.; Kikuchi, T. Chem. Pharm. Bull. 1984, 32, 5066-5069. https://doi.org/10.1248/cpb.32.5066
  13. Dawson, V. L.; Brahmbhatt, H. P.; Mong, J. A.; Dawson, T. M. Neuropharmacology 1994, 33, 1425-1430. https://doi.org/10.1016/0028-3908(94)90045-0
  14. Korhonen, R.; Lahti, A.; Kankaanranta, H.; Moilanen, E. Curr. Drug Targets Inflamm. Allergy 2005, 4, 471-479. https://doi.org/10.2174/1568010054526359
  15. Yamashita, T.; Kawashima, S.; Ohashi, Y.; Ozaki, M.; Ueyama, T.; Ishida, T.; Inoue, N.; Hirata, K.; Akita, H.; Yokoyama, M. Circulation 2000, 101, 931-937. https://doi.org/10.1161/01.CIR.101.8.931
  16. Penglis, P. S.; Cleland, L. G.; Demasi, M.; Caughey, G. E.; James, M. J. J. Immunol. 2000, 165, 1605-1611. https://doi.org/10.4049/jimmunol.165.3.1605
  17. Nathan, C. FASEB J. 1992, 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  18. Marletta, M. A. J. Biol. Chem. 1993, 268, 12231-12234.
  19. Duval, D. L.; Miller, D. R.; Collier, J., Billings, R. E. Mol. Pharmacol. 1996, 50, 277-284.
  20. Son, H. J.; Lee, H. J.; Yun-Choi, H. S.; Ryu, J. H. Planta Med. 2000, 66, 469-471. https://doi.org/10.1055/s-2000-8592
  21. Chen, T. H.; Kao, Y. C.; Chen, B. C.; Chen, C. H.; Chan, P.; Lee, H. M. Eur. J. Pharmacol. 2006, 541, 138-146. https://doi.org/10.1016/j.ejphar.2006.05.002
  22. Hamasaki, Y.; Kobayashi, I.; Zaitu, M.; Tsuji, K.; Kita, M.; Hayasaki, R.; Muro, E.; Yamamoto, S.; Matsuo, M.; Ichimaru, T.; Miyazaki, S. Planta Med. 1999, 65, 222-226. https://doi.org/10.1055/s-1999-13984
  23. Wang, J. P.; Raung, S. L.; Chen, C. C.; Kuo, J. S.; Teng, C. M. Naunyn Schmiedebergs Arch. Pharmacol. 1993, 348, 663-669. https://doi.org/10.1007/BF00167245
  24. Oh, J. H.; Kang, L. L.; Ban, J. O.; Kim, Y. H.; Kim, K. H.; Han, S. B.; Hong, J. T. Chem. Biol. Interact. 2009, 180, 506-514. https://doi.org/10.1016/j.cbi.2009.03.014
  25. Choi, M. S.; Lee, S. H.; Cho, H. S.; Kim, Y.; Yun, Y. P.; Jung, H. Y.; Jung, J. K.; Lee, B. C.; Pyo, H. B.; Hong, J. T. Eur. J. Pharmacol. 2007, 556, 181-189. https://doi.org/10.1016/j.ejphar.2006.10.054
  26. Connell, L.; Mclnnes, I. B. Best Pract. Res. Clin. Rheumatol. 2006, 20, 865-878. https://doi.org/10.1016/j.berh.2006.05.011
  27. Aggarwal, B. B.; Natarajan, K. Eur. Cytokine Netw. 1996, 7, 93-124.

Cited by

  1. Antigastritis effects of Armillariella tabescens (Scop.) Sing. and the identification of its anti-inflammatory metabolites vol.70, pp.3, 2016, https://doi.org/10.1111/jphp.12871
  2. Lignans from Saururus chinensis exhibit anti-inflammatory activity by influencing the Nrf2/HO-1 activation pathway vol.42, pp.4, 2016, https://doi.org/10.1007/s12272-018-1093-4
  3. (3β,16α)-3,16-Dihydroxypregn-5-en-20-one from the Twigs of Euonymus alatus (Thunb.) Sieb. Exerts Anti-Inflammatory Effects in LPS-Stimulated RAW-264.7 Macrophages vol.24, pp.21, 2016, https://doi.org/10.3390/molecules24213848