DOI QR코드

DOI QR Code

Effects of Cyclo-His-Pro-enriched yeast hydrolysate on blood glucose levels and lipid metabolism in obese diabetic ob/ob mice

  • Jung, Eun Young (Department of Home Economic Education, Jeonju University) ;
  • Hong, Yang Hee (Department of Beauty Art, Suwon Women's University) ;
  • Park, Chung (LINC Project Group, Daejeon University) ;
  • Suh, Hyung Joo (Department of Public Health Sciences, Graduate School, Korea University)
  • Received : 2015.07.22
  • Accepted : 2015.10.07
  • Published : 2016.04.01

Abstract

BACKGROUND/OBJECTIVE: We examined the hypoglycemic and anti-hyperlipidemic effect of yeast hydrolysate (YH) enriched with Cyclo-His-Pro (CHP) in the C57BL/6J ob/ob mouse model. MATERIALS/METHODS: Mice were separated into 4 groups (8 mice/group) on the basis of blood glucose and body weight: WT control, lean mice given vehicle; ob/ob control, ob/ob mice given vehicle; YH-1, ob/ob mice given 0.5 g/kg of YH; YH-2, ob/ob mice given 1 g/kg of YH. YH in saline or vehicle was administered orally in the same volume every day for 3 weeks. RESULTS: Mice treated with YH (0.5 and 1 g/kg) for 3 weeks displayed a significant reduction in overall body weight gain and perirenal and epididymal adipose tissue weight compared to the ob/ob control group. Additionally, high-density lipoprotein (HDL) cholesterol, glucose, and atherogenic indexes were significantly decreased in the blood of YH-1 and YH-2 groups compared to the ob/ob control. In ob/ob mice, YH administration significantly improved glucose tolerance and blood insulin levels. These data indicate that YH treatment produces potent hypoglycemic and anti-hyperlipidemic effects by controlling body weight, fat mass, blood lipid, insulin levels, and glucose tolerance. CONCLUSION: YH could potentially be used as a treatment option for diabetes and hyperlipidemia. The CHP-enriched YH may be a promising strategy in the development of hypoglycemic peptide nutraceuticals.

Keywords

References

  1. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 2004;164:1422-6. https://doi.org/10.1001/archinte.164.13.1422
  2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:2568-9. https://doi.org/10.2337/diacare.27.10.2568
  3. Goldfrank L, Lewin N, Flomenbaum N, Howland MA. The pernicious panacea: herbal medicine. Hosp Physician 1982;18:64-9.
  4. Sabu MC, Smitha K, Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 2002;83:109-16. https://doi.org/10.1016/S0378-8741(02)00217-9
  5. Pari L, Umamaheswari J. Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res 2000;14:136-8. https://doi.org/10.1002/(SICI)1099-1573(200003)14:2<136::AID-PTR607>3.0.CO;2-K
  6. Tiwari AK, Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 2002;83:30-8.
  7. Jung EY, Lee HS, Choi JW, Ra KS, Kim MR, Suh HJ. Glucose tolerance and antioxidant activity of spent brewer's yeast hydrolysate with a high content of Cyclo-His-Pro (CHP). J Food Sci 2011;76:C272-8. https://doi.org/10.1111/j.1750-3841.2010.01997.x
  8. Hilton CW, Prasad C, Vo P, Mouton C. Food contains the bioactive peptide, cyclo(His-Pro). J Clin Endocrinol Metab 1992;75:375-8.
  9. Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 2003;5:317-24. https://doi.org/10.1046/j.1463-1326.2003.00281.x
  10. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VL. Anti-hyperglycemic activity of zinc plus cyclo (his-pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med (Maywood) 2003;228:1338-45. https://doi.org/10.1177/153537020322801112
  11. Song MK, Rosenthal MJ, Song AM, Yang H, Ao Y, Yamaguchi DT. Raw vegetable food containing high cyclo (his-pro) improved insulin sensitivity and body weight control. Metabolism 2005;54:1480-9. https://doi.org/10.1016/j.metabol.2005.05.014
  12. Morley JE, Levine AS, Prasad C. Histidyl-proline diketopiperazine decreases food intake in rats. Brain Res 1981;210:475-8. https://doi.org/10.1016/0006-8993(81)90930-6
  13. Steiner H, Wilber JF, Prasad C, Rogers D, Rosenkranz RT. Histidyl proline diketopiperazine (Cyclo [His-Pro]) in eating disorders. Neuropeptides 1989;14:185-9. https://doi.org/10.1016/0143-4179(89)90043-7
  14. Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM. Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 2009;158:442-50. https://doi.org/10.1111/j.1476-5381.2009.00201.x
  15. Jung EY, Suh HJ, Kim SY, Hong YS, Kim MJ, Chang UJ. Appetite suppressive effects of yeast hydrolysate on nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in hypothalamus. Phytother Res 2008;22:1417-22. https://doi.org/10.1002/ptr.2264
  16. Jung EY, Lee HS, Chang UJ, Bae SH, Kwon KH, Suh HJ. Acute and subacute toxicity of yeast hydrolysate from Saccharomyces cerevisiae. Food Chem Toxicol 2010;48:1677-81. https://doi.org/10.1016/j.fct.2010.03.044
  17. Kim KM, Chang UJ, Kang DH, Kim JM, Choi YM, Suh HJ. Yeast hydrolysate reduces body fat of dietary obese rats. Phytother Res 2004;18:950-3. https://doi.org/10.1002/ptr.1582
  18. Michael B, Yano B, Sellers RS, Perry R, Morton D, Roome N, Johnson JK, Schafer K, Pitsch S. Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol 2007;35:742-50. https://doi.org/10.1080/01926230701595292
  19. Peters JM, Boyd EM. Organ weights and water levels of the rat following reduced food intake. J Nutr 1966;90:354-60. https://doi.org/10.1093/jn/90.4.354
  20. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499-502.
  21. Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 1972;97:142-5. https://doi.org/10.1039/an9729700142
  22. Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J Agric Food Chem 2007;55:10641-8. https://doi.org/10.1021/jf0722598
  23. Kim MJ, Chang UJ, Chung JH, Kim HK, Lim BO, Yamada K, Lim Y, Kang SA. Dissimilarity in Fos and Jun immunoreactivity in hypothalamic regions between obese and lean Zucker rats. Biosci Biotechnol Biochem 2005;69:1982-4. https://doi.org/10.1271/bbb.69.1982
  24. Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 2005;19:471-82. https://doi.org/10.1016/j.beem.2005.07.004
  25. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine rgan. Mol Cell Endocrinol 2010;316:129-39. https://doi.org/10.1016/j.mce.2009.08.018
  26. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009;48:275-97. https://doi.org/10.1016/j.plipres.2009.05.001
  27. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000;6:998-1003. https://doi.org/10.1038/79697
  28. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999;131:281-303. https://doi.org/10.7326/0003-4819-131-4-199908170-00008
  29. Marles RJ, Farnsworth NR. Plants as sources of antidiabetic agents. In: Wagner H, Farnsworth NR, editors. Economic and Medicinal Plant Research. Vol. 6. London: Academic Press; 1994. 149-88.
  30. Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, Kim MY, Yoon M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J Ethnopharmacol 2008;115:263-70. https://doi.org/10.1016/j.jep.2007.09.029
  31. den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 2004;24:644-9. https://doi.org/10.1161/01.ATV.0000116217.57583.6e
  32. Arsenault BJ, Boekholdt SM, Kastelein JJ. Lipid parameters for measuring risk of cardiovascular disease. Nat Rev Cardiol 2011;8:197-206. https://doi.org/10.1038/nrcardio.2010.223
  33. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002;161:1-16. https://doi.org/10.1016/S0021-9150(01)00651-7
  34. Reaven GM. Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured? Am J Med 1983;74:3-17.
  35. Genuth SM, Przybylski RJ, Rosenberg DM. Insulin resistance in genetically obese, hyperglycemic mice. Endocrinology 1971;88:1230-8. https://doi.org/10.1210/endo-88-5-1230
  36. Friedman JE, Dohm GL, Leggett-Frazier N, Elton CW, Tapscott EB, Pories WP, Caro JF. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest 1992;89:701-5. https://doi.org/10.1172/JCI115638
  37. Klein R, Klein BE, Moss SE, Cruickshanks KJ. Relationship of hyperglycemia to the long-term incidence and progression of diabetic retinopathy. Arch Intern Med 1994;154:2169-78. https://doi.org/10.1001/archinte.1994.00420190068008
  38. Liu QZ, Pettitt DJ, Hanson RL, Charles MA, Klein R, Bennett PH, Knowler WC. Glycated haemoglobin, plasma glucose and diabetic retinopathy: cross-sectional and prospective analyses. Diabetologia 1993;36:428-32. https://doi.org/10.1007/BF00402279
  39. Abraira C, Colwell JA, Nuttall FQ, Sawin CT, Nagel NJ, Comstock JP, Emanuele NV, Levin SR, Henderson W, Lee HS. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM). Results of the feasibility trial. Veterans Affairs Cooperative Study in Type II Diabetes. Diabetes Care 1995;18:1113-23. https://doi.org/10.2337/diacare.18.8.1113
  40. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103-17. https://doi.org/10.1016/0168-8227(95)01064-K
  41. Song MK, Rosenthal MJ, Hong S, Harris DM, Hwang I, Yip I, Golub MS, Ament ME, Go VL. Synergistic antidiabetic activities of zinc, cyclo (his-pro), and arachidonic acid. Metabolism 2001;50:53-9. https://doi.org/10.1053/meta.2001.19427
  42. Rosenthal MJ, Hwang IK, Song MK. Effects of arachidonic acid and cyclo (his-pro) on zinc transport across small intestine and muscle tissues. Life Sci 2001;70:337-48. https://doi.org/10.1016/S0024-3205(01)01395-9

Cited by

  1. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review vol.9, pp.3, 2016, https://doi.org/10.15171/apb.2019.041
  2. Improving growth performance and blood profile by feeding autolyzed yeast to improve pork carcass and meat quality vol.92, pp.1, 2016, https://doi.org/10.1111/asj.13666