DOI QR코드

DOI QR Code

Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application

원격 화학 센서로 활용 가능한 플렉서블 미세유체 메타물질 흡수체

  • Kim, Hyung Ki (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sungjoon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김형기 (중앙대학교 전자전기공학부) ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Received : 2015.10.02
  • Accepted : 2016.01.08
  • Published : 2016.02.29

Abstract

In this paper, a novel flexible microfluidic metamaterial absorber is proposed for remote chemical sensor applications. The proposed metamaterial absorber consists of a periodic of split-ring-cross resonators(SRCRs) and a microfluidic channel. The SRCR patterns are inkjet-printed using silver nanoparticle inks on paper. The microfluidic channels are laser-etched on polydimethylsiloxane(PDMS) material. The proposed absorber can detect change of the effective permittivity at different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting change of the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results shows that the resonant frequency is 10.49 GHz at the empty channel. When ethanol and DI-water are injected into the channel, the resonant frequencies are 10.04 GHz and 8.9 GHz, respectively.

본 논문에서는 원격 화학 센서로 활용 가능한 플렉서블 미세유체 메타물질 흡수체를 제안한다. 제안된 흡수체는 잉크젯 프린팅 기법으로 종위 기판 위에 인쇄한 분할고리공진기(SRCR: Split Ring Cross Resonator)와 Polydimethylsiloxane(PDMS) 기판에 레이저 식각된 미세유체 채널로 구성되어 있어 매우 유연한 특징을 보인다. 본 연구에서 제안한 메타물질 흡수체는 미세유체 채널에 주입된 화학물질에 따른 실효 유전율의 변화를 공진주파수의 이동으로 감지할 수 있다. 제안된 흡수체는 시뮬레이션과 측정을 통하여 성능을 검증하였다. 측정 결과, 공기의 경우에는 10.49 GHz에서 흡수가 되었고, 에탄올과 탈이온수의 경우에는 각각 10.04 GHz와 8.9 GHz에서 흡수체로 동작함을 확인할 수 있었다.

Keywords

References

  1. G. Wen, X. Wen, S. Shung, and M. Choi, "Whole-cell biosensor for determination of methanol", Sensors Actuators B: Chem., vol. 201, no. 1, pp. 586-591, Oct. 2014. https://doi.org/10.1016/j.snb.2014.04.107
  2. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, no. 20, p. 207402, May 2008. https://doi.org/10.1103/PhysRevLett.100.207402
  3. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, "Mechanically stretchable and tunable metamaterial absorber", Appl. Phys. Lett., vol. 106, no. 9, p. 091907, Mar. 2015. https://doi.org/10.1063/1.4914502
  4. R. Melik, E. Unal, N. Perkgoz, C. Puttlitz, and H. Demir, "Metamaterial-based wireless strain sensors", Appl. Phys. Lett., vol. 95, no. 1, p. 011106, Jul. 2009. https://doi.org/10.1063/1.3162336
  5. E. Verpoorte, B. Schoot, S. Jeanneret, A. Manz, H. Widmer, and N. Rooij, "Three-dimensional micro flow manifolds for miniaturized chemical analysis systems", J. Micromech. Microeng., vol. 4, no. 4, p. 246, Oct. 1994. https://doi.org/10.1088/0960-1317/4/4/009
  6. G. Doku, S. Haswell, "Further studies into the development of a micro-fia system based on electroosmotic flow for the determination of phosphate as orthophosphate", Anal. Chim. Acta, vol. 382, no. 1, p. 1, Feb. 1999. https://doi.org/10.1016/S0003-2670(98)00830-7
  7. I. Dimov, L. Basabe-Desmonts, J. Garcia-Cordero, B. Ross, A. Ricco, and L. Lee, "Stand-alone self-powered integrated microfluidic blood analysis system(SIMBAS)", Lab on a Chip, vol. 11, no. 5, pp. 845-850, Mar. 2011. https://doi.org/10.1039/C0LC00403K
  8. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrates: Design and application to bioassays", J. Am. Chem. Soc., vol. 120, no. 3, pp. 500-508, Jan. 1998. https://doi.org/10.1021/ja973071f
  9. A. Martinez, S. Phillips, G. Whitesides, and E. Carrilho, "Diagnostics for the developing world: Microfluidic paper-based analytical devices", Anal. Chem., vol. 82, no. 1, pp. 3-10, Jan. 2010. https://doi.org/10.1021/ac9013989
  10. K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Anal. Chem., vol. 80, no. 18, pp. 6928-6934, Sep. 2008. https://doi.org/10.1021/ac800604v
  11. B. Cook, J. Cooper, and M. Tentzeris, "An inkjet-printed microfluidic RFID-enabled platform for wireless lab-on-chip applications", IEEE Trans. on Microw. Theo. and Tech., vol. 61, pp. 4714-4723, Nov. 2013. https://doi.org/10.1109/TMTT.2013.2287478
  12. J. Mateu, N. Orloff, M. Rinehart, and J. Booth, "Broadband permittivity of liquids extracted from transmission line measurements of microfluidic channels", IEEE/MTT-S International Microwave Symposium, pp. 523-526, Jun. 2007.
  13. T. Chretiennot, D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions", IEEE Trans. on Microw. Theo. and Tech., vol. 61, no. 2, pp. 972-978, Dec. 2012. https://doi.org/10.1109/TMTT.2012.2231877
  14. G. Hayes, J. So, A. Qusba, M. Dickey, and G. Lazzi, "Flexible liquid metal alloy(EGaIn) microstrip patch antenna", IEEE Trans. on Ant. and Prop., vol. 60, no. 5, pp. 2151-2156, Apr. 2012. https://doi.org/10.1109/TAP.2012.2189698
  15. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, "Design, theory, and measurement of a polarization-insentive absorber for terahertz imaging", Phys. Rev. B, vol. 79, no. 12, p. 125104, Mar. 2009. https://doi.org/10.1103/PhysRevB.79.125104
  16. W. Withayachumnankul, C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials", Optics Express, vol. 18, no. 25, pp. 25912-25921, Dec. 2010. https://doi.org/10.1364/OE.18.025912
  17. S. Kim, C. Moriotti, F. Alimenti, P. Mezzanotte, A. Georgiadis, A. Collado, L. Roselli, and M. Tentzeris, "No battery required: perpetual RFID-enabled wireless sensors for cognitive intelligence applications", IEEE Microw. Mag., vol. 14, no. 5, p. 66, Jul. 2013. https://doi.org/10.1109/MMM.2013.2259398