DOI QR코드

DOI QR Code

Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition

  • 김윤진 (신소재공학부, 전남대학교) ;
  • 김인영 (신소재공학부, 전남대학교) ;
  • 강명길 (신소재공학부, 전남대학교) ;
  • 문종하 (신소재공학부, 전남대학교) ;
  • 김진혁 (신소재공학부, 전남대학교)
  • Kim, Yoon Jin (Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University) ;
  • Kim, In Young (Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University) ;
  • Gang, Myeng Gil (Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University) ;
  • Moon, Jong Ha (Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University) ;
  • Kim, Jin Hyeok (Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University)
  • 투고 : 2015.12.23
  • 심사 : 2016.01.04
  • 발행 : 2016.03.31

초록

$Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

키워드

참고문헌

  1. S.C. Riha, B.A. Parkinson, A.L. Prieto,"Solution-based synthesis and characterization of $Cu_2ZnSnS_4$ nanocrystals", J. Am. Chem. Soc., Vol.131, pp.12054-12055, 2009. https://doi.org/10.1021/ja9044168
  2. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, "Fabrication of $Cu_2ZnSnS_4$ thin films by co-evaporation", Phys. Status Solidi, (c) 3, pp.2844-2847, 2006. https://doi.org/10.1002/pssc.200669631
  3. Jonathan J. Scragg a, Dominik M. Berg b, Phillip J. Dale b, "A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers", Elctroanlytical Chemistry, Vol.646, pp.52-59, 2010. https://doi.org/10.1016/j.jelechem.2010.01.008
  4. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, K. H. Kim, "Electrical and optical properties of $Cu_2ZnSnS_4$ thin films prepared by rf magnetron sputtering process", Sol. Energy Mater. Sol. Cells, Vol.75, no.1-2, pp.155-162, 2003. https://doi.org/10.1016/S0927-0248(02)00127-7
  5. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. H.Chu,"Structure, composition and optical properties of $Cu_2ZnSnS_4$ thin films deposited by Pulsed Laser Deposition method", Sol. Energy Mater. Sol. Cells, Vol.95, no.10, pp.2907-2913, 2011. https://doi.org/10.1016/j.solmat.2011.06.026
  6. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, "The path towards a high-performance solution-processed kesterite solar cell", Sol. Energy Mater. Sol.Cells, Vol.95, pp. 1421-1436, 2011. https://doi.org/10.1016/j.solmat.2010.11.028
  7. C. Persson, "Electronic and optical properties of $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$", J. Appl. Phys., Vol.107, pp.053710, 2010. https://doi.org/10.1063/1.3318468
  8. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, E.Mellikov, "$Cu_2Zn_{1-x}Cd_xSn(Se_{1-y}S_y)_4$ solid solutions as absorber materials for solar cells", Phys. Status Solidi, (a) 205, pp.167-170, 2008. https://doi.org/10.1002/pssa.200776839
  9. Wooseok Ki, Huhg W. Hillhouse, "Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent", Advanced Energy Materials, Vol.1, pp.732-735, 2011. https://doi.org/10.1002/aenm.201100140
  10. Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, Supratik Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant $Cu_2ZnSnS_4$ absorber", Progress in Photovoltaics, Vol.21, pp.72-76, 2013 https://doi.org/10.1002/pip.1174
  11. Wei Wang, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu, David B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency", Advanced Energy Materials, Vol.4, no.7, 1301465 pp.1-5, 2014.
  12. Feng Jiang, Shigeru Ikeda, Zeguo Tang, Takashi Minemoto, Wilman Septina, Takashi Harada, Michio Matsumura, "Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of $Cu_2ZnSnS_4$ absorbers for thin-film solar cell", Progress in Photovoltaics, Vol.23,pp.1884-1895,2015. https://doi.org/10.1002/pip.2638