DOI QR코드

DOI QR Code

공압인공근육을 가진 내부형 연속체로봇의 기구식

Kinematics of an Intrinsic Continuum Robot with Pneumatic Artificial Muscles

  • 투고 : 2015.08.17
  • 심사 : 2015.11.27
  • 발행 : 2016.03.01

초록

본 연구에서는 공압인공근육을 구동부로 가지는 내부형 연속체로봇의 기구학을 제시한다. 연속체로봇 단일마디는 세 개 인공근육의 병렬구조로 구성되며, 각 인공근육은 가해지는 공기압력에 의해서 독립적으로 수축하여 근육의 한쪽이 부착된 기준 마디절에 대해서 근육의 다른쪽이 연결된 원격의 마디절의 공간상 운동이 발생한다. 인공근육의 굽힘형상을 고려하여 원격 마디절 중심에서의 방위와 위치를 예측하는 기구식을 유도하였으며, 단일 마디를 여러 층으로 적층하였을 때 로봇 말단장치에서의 방위와 위치도 변환행렬의 곱으로 제시한다. 그리고 인공근육의 길이/압력 변화에 따른 말단장치에서의 속도를 계산하는 자코비안 행렬을 구동부의 위치배열을 고려하여 유도하였고 실제 실험을 통해서 제시한 기구식의 유효성을 검증하였다.

This study presents the kinematics of an intrinsic continuum robot actuated by pneumatic artificial muscles. The single section of a developed continuum robot consisted of three muscles in parallel. The contraction of each muscle according to applied air pressure produced spatial motions of a distal plate with respect to a base plate. Based on the bending behaviors of artificial muscles, the orientation and position of the end-effector of a continuum robot were formulated using a transformation matrix. The orientation and position was also determined for a single section of the distal plate. A Jacobian matrix relating the contraction rate or the pressure rate of the muscles to the velocity vector of the end-effector was calculated considering the assembled position of actuators between neighboring sections of the robot. Experimental results showed that the motions of the intrinsic continuum robot were accurately estimated by the proposed kinematics.

키워드

참고문헌

  1. Robinson, G. and Davies, J. B. C., 1999, "Continuum Robots -a State of the Art-," Proc. IEEE Conf. on Robotics and Automation, pp 2849-2854.
  2. http://www.templeallen.com, Temple Allen Industries
  3. Hannon, M. W. and Walker I. D., 2003, "Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots," J. Robotic Systems, Vol. 20, No. 2, pp 45-63. https://doi.org/10.1002/rob.10070
  4. Jones, B. A. and Walker, I. D., 2006, "Kinematics for Multisection Continuum Robots," IEEE Trans. on Robotics, Vol. 22, No. 1, pp. 43-55. https://doi.org/10.1109/TRO.2005.861458
  5. Chen, Gang and Pham, M. T., 2008, "A Semi-autonomous Micro-robotic System for Colonoscopy," Proc. IEEE Conf. on Robotics and Biomimetics, pp 703-708.
  6. McMahan W., et al., 2006, "Field Trials and Tesing of the OctArm Continuum Manipulator," Proc. IEEE Conf. on Robotics and Automation, pp 2336-2341.
  7. Bailly, Y. and Amirat, Y., 2005, "Modeling and Control of a Hybrid Continuum Active Catheter for Aortic Aneurysm Treatment," Proc. IEEE Conf. on Robotics and Automation, pp. 924-929.
  8. Chirikjian, G. S. and Burdick, J. W., 1994, "A Modal Approach to Hyper-redundant Manipulator Kinematics, IEEE Trans. on Robotics, Vol. 10, No. 3, pp. 343-354. https://doi.org/10.1109/70.294209
  9. Godage, I. S., et al., 2011, "Shape Function-based Kinematics and Dynamics for Variable Length Continuum Robotic Arms, Proc. IEEE Conf. on Robotics and Automation, pp 452-457.
  10. Craig, J. J., 2005, "Introduction to Robotics - Mechanics and Control -," Pearson Prentice Hall.
  11. Kang, C. H., Bae, J. H. and Kang, B. S., 2015, "Development of an Intrinsic Continuum Robot and Attitude Estimation of its End-effector Based on a Kalman filter," Trans. Korean Soc. Mech. A, Vol. 39, No. 4, pp. 361-367. https://doi.org/10.3795/KSME-A.2015.39.4.361
  12. Tondu, B. and Lopez, P., 2000, "Modeling and Control of Mckibben Artificial Muscle Robot Actuators," IEEE Control Systems Magazine, Vol. 20, No. 2, pp. 15-38.

피인용 문헌

  1. The Design and Mathematical Model of a Novel Variable Stiffness Extensor-Contractor Pneumatic Artificial Muscle vol.5, pp.5, 2018, https://doi.org/10.1089/soro.2018.0010