DOI QR코드

DOI QR Code

Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites

입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가

  • Received : 2015.03.31
  • Accepted : 2016.01.27
  • Published : 2016.03.01

Abstract

The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement (CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were $50^{\circ}C$, room temperature, $-40^{\circ}C$, and $-60^{\circ}C$. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from $50^{\circ}C$ to $-40^{\circ}C$. In addition, the strength of the particulate reinforced composites increased sharply at $-60^{\circ}C$, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

입자강화복합재료를 이용하여 쐐기분열시험으로부터 얻은 파괴에너지, 균열진전 및 CTOD 에 대한 온도의 영향이 조사되었다. 이용된 재료는 고분자바인더, 산화제 및 알루미늄입자로 이루어져 있으며, 쐐기분열시편의 시험 속도는 50 mm/min 이고, 온도 조건은 $50^{\circ}C$, 상온, $-40^{\circ}C$, $-60^{\circ}C$이었다. 분열하중-CMOD 로부터 구한 파괴에너지는 $50^{\circ}C$에서 $-40^{\circ}C$까지 온도의 감소와 함께 증가한다. 또한 $-60^{\circ}C$에서 입자강화복합재료의 강도는 유리전이온도에 의해 급격히 증가하며 취성거동을 보였다. 그리고 디지털 이미지 상관법을 이용하여 균열 선단부근에 대한 변형률장이 분석되었다.

Keywords

Acknowledgement

Grant : BK21플러스

Supported by : 충남대학교

References

  1. Liu, C. T., 1997, "Crack Growth Behavior in a Solid Propellant," Engineering Fracture Mechanics, Vol. 56, No. 1, pp. 127-135. https://doi.org/10.1016/S0013-7944(96)00107-5
  2. Schapery, R. A., 1975, "A Theory of Crack Initiation and Growth in Viscoelastic Media: II, Approximate Methods of Analysis," International Journal of Fracture, Vol. 11, No. 3, pp. 369-388. https://doi.org/10.1007/BF00033526
  3. Tussiwand, G. S., Saouma, V. E., Terzenbach, R. and De Luca, L. T., 2009, "Fracture Mechanics of Composite Solid Rocket Propellant Grains: Material Testing," Journal of Propulsion and Power, Vol. 25, No. 1, pp. 60-73. https://doi.org/10.2514/1.34227
  4. Kwon, Y. W. and Liu, C. T., 1998, "Damage Growth in a Particulate Composite under a High Strain Rate Loading," Mechanics Research Communications, Vol. 25, No. 3, pp. 329-336. https://doi.org/10.1016/S0093-6413(98)00045-7
  5. Kakavas, P. A., 2013, "Mechanical Properties of Propellant Composite Materials Reinforced with Ammonium Perchlorate Particles," International Journal of Solids and Structures, Vol. 51, No. 10, pp. 2019-2026. https://doi.org/10.1016/j.ijsolstr.2014.02.015
  6. Bruhwiler, E. and Wittmann, F. H., 1990, "The Wedge Splitting Test, A New Method of Performing Stable Fracture Mechanics Tests," Engineering Fracture Mechanics, Vol. 35, No. 1, pp. 117-125. https://doi.org/10.1016/0013-7944(90)90189-N
  7. Crammond, G. S., Boyd, W. and Dulieu-Barton, J.M., 2013, "Speckle Pattern Quality Assessment for Digital Image Correlation," Optics and Lasers in Engineering, Vol. 51, pp. 1368-1378. https://doi.org/10.1016/j.optlaseng.2013.03.014
  8. Lecompte, D., Smits, A. and Sven B., 2006, "Quality Assessment of Speckle Patterns for Digital Image Correlation," Optics and Lasers in Engineering, Vol. 44, pp. 1132-1145. https://doi.org/10.1016/j.optlaseng.2005.10.004
  9. Seo, B. H. and Kim, J. H., 2014, "Estimation of Master Curves of Relaxation Modulus and Tensile Properties for Solid Propellant," Advanced Materials Research, Vol. 871, pp. 247-252.
  10. Jung, G. D., 1998, "A Nonlinear Viscoelastic Constitutive Model of Solid Propellant," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 7, pp. 1237-1249.
  11. Seo, B. H. and Kim, J. H., 2013, "Effect of Temperature and Thickness on Fracture Toughness of Solid Propellant," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 11, pp. 1355-1360. https://doi.org/10.3795/KSME-A.2013.37.11.1355