DOI QR코드

DOI QR Code

Formulation of Friction Forces in LM Ball Guides

LM 볼가이드의 마찰력 정식화

  • Oh, Kwang-Je (Dept. of Mechanical Engineering, Hanyang Univ.) ;
  • Khim, Gyungho (Ultra-Precision System Lab., Korea Institute of Machinery and Materials) ;
  • Park, Chun-Hong (Ultra-Precision System Lab., Korea Institute of Machinery and Materials) ;
  • Chung, Sung-Chong (Dept. of Mechanical Engineering, Hanyang Univ.)
  • 오광제 (한양대학교 기계공학과) ;
  • 김경호 (한국기계연구원 초정밀시스템연구실) ;
  • 박천홍 (한국기계연구원 초정밀시스템연구실) ;
  • 정성종 (한양대학교 기계공학과)
  • Received : 2015.10.30
  • Accepted : 2015.12.09
  • Published : 2016.02.01

Abstract

Linear motion (LM) ball guides with rolling contact are core units of feed-drive systems. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, the friction force induced from LM ball guides generates heat, which deteriorates positioning accuracy and incurs changes of stiffness and preload. To accurately analyze the effects and apply the results to precision machine design, mathematical modeling of the friction force is required. In this paper, accurate formulation of the friction force due to rolling, viscous, and slip frictions is conducted for LM ball guides. To verify the reliability of the developed friction model, experiments are performed under various assembly, load and velocity conditions. Effects of frictional components are analyzed through the formulated friction model.

LM 볼가이드는 구름접촉을 갖는 이송시스템의 핵심요소로서 공작기계, 반도체 장비, 로봇 등 정밀기계에 널리 사용된다. 그러나 LM 볼가이드에서 발생하는 마찰력은 마찰열을 유발하여 위치 정도를 저하시키고 강성과 예압 변화를 야기한다. 이런 영향을 정확하게 분석하여 정밀 기계설계에 응용하기 위해서는 마찰력 모델의 정식화가 요구된다. 본 논문에서는 구름마찰, 점성마찰, 슬립마찰을 고려한 LM 볼가이드의 정확한 마찰력 모델을 유도한다. 그리고 다양한 조립, 부하 및 속도 조건에서 실험을 수행하여 마찰력 모델의 신뢰성을 검증하고, 마찰력 모델로부터 마찰 성분의 영향력을 분석한다.

Keywords

References

  1. Oh, K. J., Khim, G. H., Park, C. H. and Chung, S. C., 2015, "Mathematical Modeling of Friction Force in LM Ball Guides," Journal of the KSPE, Vol. 32, No. 5, pp. 423-429. https://doi.org/10.7736/KSPE.2015.32.5.423
  2. KIMM., 2014, "Development of Platform Technology for Machine Accuracy Simulation II," Research Report, Korea Institute of Machinery & Materials.
  3. Kim, K. H., Park, C. H., Song, C. K., Lee, H. S. and Kim, S. W., 2000, "The Accuracy Design of LM Guide System in Machine Tools," Journal of the KSPE, Vol. 23, No. 7, pp. 692-695.
  4. Ohta, H. and Tanaka, K., 2010, "Vertical Stiffness of Preload Linear Guideway Type Ball Bearings Incorporating the Flexibility of the Carriage and Rail," Journal of Tribology, Vol. 132, pp. 1-9.
  5. Shimizu, S., 1999, "Stiffness Analysis of Linear Motion Guide System," International Journal of the JSPE, Vol. 33, No. 3, pp. 163-167.
  6. Kim, K. H., Park, C. H., Lee, H. and Kim, S. W., 2002, "Analysis of the Motion Errors in Linear Motion Guide," Journal of the KSPE, Vol. 19, No. 5, pp.139-148.
  7. Oh, K., Park, C. H. and Chung, S. C., 2014, "Identification of Static and Dynamic Frictions in Ballscrew Servos," Proceedings of the ASPE Annual Meeting, Vol. 59, pp. 246-250.
  8. Jang, S. H., Khim, G. and Park, C. H., 2013, "An Experimental Prediction of Heat Generation Caused by Friction Force on Linear Motion Guide," Proceeding of the KSPE, pp. 489-490.
  9. Harris, T. A., 2001, Rolling Bearing Analysis, John Wiley and Sons, New York, pp. 183-230.
  10. Stolarski, T. A. and Tobe, S., 2000, Rolling Contacts, Professional Engineering Publishing Limited, pp. 76-80.
  11. Hamrock, B. J. and Dowson, D., 1981, Ball Bearing Lubrication: The Elasto-hydrodynamics of Elliptical Contacts, John Wiley and Sons, pp. 187-218.
  12. Weisberg, S., 2005, Applied Linear Regression, John Wiley and Sons, pp. 194-206.

Cited by

  1. Modeling of Displacement of Linear Roller Bearing Subjected to External Forces Considering LM Block Deformation vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.1077