DOI QR코드

DOI QR Code

Optimization of Lightened Fiber-Reinforced Composite City & Trekking Bicycle Frame

섬유강화복합재료를 사용한 일반용 경량화 자전거 프레임의 최적설계

  • Yoon, Won Sok (Dept. of Mechanical Engineering, Hanyang Univ.) ;
  • Kim, Do Hyung (Dept. of Mechanical Convergence Engineering, Hanyang Univ.) ;
  • Kim, Hak Sung (Dept. of Mechanical Convergence Engineering, Hanyang Univ.)
  • 윤원석 (한양대학교 기계공학과) ;
  • 김도형 (한양대학교 융합기계공학과) ;
  • 김학성 (한양대학교 융합기계공학과)
  • Received : 2015.05.26
  • Accepted : 2015.12.14
  • Published : 2016.02.01

Abstract

In this paper, optimal designs of bicycle frame were studied for weight reduction of bicycle using carbon-fiber-reinforced plastic (CFRP), glass-fiber-reinforced plastic (GFRP) and Kevlar-fiber-reinforced plastic (KFRP), respectively. Based on the anisotropic properties of FRP material, stacking angle and thickness optimization were performed under the safety reference of European committee for standardization (CEN) to ensure the stability of bicycle frame. Finally, performances of FRP bicycle frame was evaluated by digital logic method based on the optimized results of weight, strength properties and cost. Then, the optimized bicycle frame composed of each FRPs were evaluated and ranked by total performance values.

본 연구에서는 자전거의 경량화를 위해 탄소섬유 복합재료, 유리섬유 복합재료, 케블라섬유 복합재료를 자전거 프레임의 재료로 사용하여 강도 설계 및 최적화를 수행하고 재료 성능을 비교하였다. 이를 위해 유럽표준위원회가 제시하는 자전거 안전사항을 기준으로 복합재료가 가진 이방적 특성을 활용하여 적층각 최적화와 두께 최적화를 수행하였다. 또한, 최적화된 무게, 복합재료의 강도와 비용을 바탕으로 Digital logic 방법으로 재료별 자전거 프레임의 성능을 비교하였으며 이를 통해 섬유강화복합재료를 사용한 자전거 프레임의 구조적 안정성을 확보하며 동시에 경량화를 수행할 수 있었고, 자전거 프레임에 적합한 복합재료를 선별할 수 있었다.

Keywords

References

  1. Kwon, K. B. and Kim, H. K., 2008, Research of Structure Optimization of Bicycle Frame, Korea Institute of Sport Science.
  2. Liu, T. J. C. and Wu, H. C., 2010, "Fiber Direction and Stacking Sequence Design for Bicycle Frame made of Carbon/Epoxy Composite Laminate," Material & Design, Vol. 31, Is. 4, pp. 1971-1980. https://doi.org/10.1016/j.matdes.2009.10.036
  3. Chang, R. R., 2002, "Finite Element Analyses and Experimental Considerations of the Deflection and Failure Behaviour of an Asymmetric Laminate Composite Bicycle Handlebar," Proc Instn Mech Engrs, Vol. 216, pp. 207-218.
  4. Kostopoulos, V., Markopoulos, Y. P., Giannopoulos, G. and Vlachos, D. E., 2002, "Finite Element Analysis of Impact Damage Response of Composite Motorcycle Safety Helmets," Composites Part B: Engineering, Vol. 33, Is. 2, pp. 99-107. https://doi.org/10.1016/S1359-8368(01)00066-X
  5. Al-Qureshi, H. A., 2001, "Automobile Leaf Springs from Composite Materials," Journal of Materials Processing Technology, Vol. 118, Is. 1-3, pp. 58-61. https://doi.org/10.1016/S0924-0136(01)00863-9
  6. Maleque, M. A. and Dyuti, S., 2010, "Materials Selection of a Bicycle Frame Using Cost per Unit Property and Digital Logic Method," International Journal of Mechanical and Materials Engineering, Vol. 5, No. 1, pp. 95-100.
  7. Kim, B. J., Kim, H. S. and Lee, D. G., 2006, "Design of Hybrid Steel/Composite Circular Plate Cutting Tool structures," Composites Structures, Vol. 75, Is. 1-4, pp. 250-260. https://doi.org/10.1016/j.compstruct.2006.04.028
  8. Kasavajhala, A. R. M. and Gu, L., 2011, "Fracture Analysis of Kevlar-49/Epoxy and e-Glass/Epoxy Doublers for Reinforcement of Cracked Aluminum Plates," Composites Structures, Vol. 93, Is. 8, pp. 2090-2095. https://doi.org/10.1016/j.compstruct.2011.02.012
  9. CEN, 2005, "EN 14764:2005 City and Trekking Bicycles - Safety Requirements and Test Methods," CEN.