References
- Lastoskie C. Caging carbon dioxide. Science, 330, 595 (2010). http://dx.doi.org/10.1126/science.1198066.
- Keith DW. Why capture CO2 from the atmosphere? Science, 325, 1654 (2009). http://dx.doi.org/10.1126/science.1175680.
- Chaffee AL, Knowles GP, Liang Z, Zhany J, Xiao P, Webley PA. CO2 capture by adsorption: materials and process development. Int J Greenhouse Gas Control, 1, 11 (2007). http://dx.doi.org/10.1016/S1750-5836(07)00031-X.
- Jacobson MZ. Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci, 2, 148 (2009). http://dx.doi.org/10.1039/b809990c.
- Zhao J, Yang X. Photocatalytic oxidation for indoor air purification: a literature review. Build Environ, 38, 645 (2003). http://dx.doi.org/10.1016/S0360-1323(02)00212-3.
- Daisey JM, Angell WJ, Apte MG. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13, 53 (2003). http://dx.doi.org/10.1034/j.1600-0668.2003.00153.x.
- Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev, 255, 1791 (2011). http://dx.doi.org/10.1016/j.ccr.2011.02.012.
- Meng LY, Park SJ. Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J Colloid Interface Sci, 386, 285 (2012). http://dx.doi.org/10.1016/j.jcis.2012.07.025.
- Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol, 36, 4467 (2002). http://dx.doi.org/10.1021/es0158861.
- Bae YS, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Edit, 50, 11586 (2011). http://dx.doi.org/10.1002/anie.201101891.
- Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319, 939 (2008). http://dx.doi.org/10.1126/science.1152516.
- Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in metal-organic frameworks-a comparative study. Energy Environ Sci, 4, 2177 (2011). http://dx.doi.org/10.1039/c0ee00700e.
- Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.
- Lee SY, Park SJ. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J Colloid Interface Sci, 389, 230 (2013). http://dx.doi.org/10.1016/j.jcis.2012.09.018.
- Hughes RW, Lu DY, Anthony EJ, Macchi A. Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents. Fuel Process Technol, 86, 1523 (2005). http://dx.doi.org/10.1016/j.fuproc.2005.01.006.
- Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048.
- Meng LY, Park SJ. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett, 15, 89 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.089.
- Meng LY, Park SJ. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons. J Nanosci Nanotechnol, 13, 401 (2013). http://dx.doi.org/10.1166/jnn.2013.6931.
- Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.
- Presser V, McDonough J, Yeon SH, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energ Environ Sci, 4, 3059 (2011). http://dx.doi.org/10.1039/c1ee01176f.
- Yoo HM, Lee SY, Park SJ. Ordered nanoporous carbon for increasing CO2 capture. J Solid State Chem, 197, 361 (2013). http://dx.doi.org/10.1016/j.jssc.2012.08.035.
- Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP. Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem Mater, 24, 4531 (2012). http://dx.doi.org/10.1021/cm3018264.
- Siriwardane RV, Shen MS, Fisher EP, Poston JA. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels, 15, 279 (2001). http://dx.doi.org/10.1021/ef000241s.
- Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energ, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.
- Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). http://dx.doi.org/10.1016/j.jcis.2007.05.033.
- Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). http://dx.doi.org/10.1006/jcis.2002.8269.
- Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.043.
- Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4.
- Ahmadpour A, Do DD. The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471 (1996). http://dx.doi.org/10.1016/0008-6223(95)00204-9.
- Martín-Jimeno FJ, Suárez-García F, Paredes JI, Martínez-Alonso A, Tascón JMD. Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. Carbon, 81, 137 (2015). http://dx.doi.org/10.1016/j.carbon.2014.09.042.
- Hayashi J, Kazehaya A, Muroyama K, Watkinson AP. Preparation of activated carbon from lignin by chemical activation. Carbon, 38, 1873 (2000). http://dx.doi.org/10.1016/S0008-6223(00)00027-0.
- Mohammadi SZ, Hamidian H, Moeinadini Z. High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. J Ind Eng Chem, 20, 4112 (2014). http://dx.doi.org/10.1016/j.jiec.2014.01.009.
- Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J, 260, 291 (2015). http://dx.doi.org/10.1016/j.cej.2014.09.017.
- Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 41, 267 (2003). http://dx.doi.org/10.1016/s0008-6223(02)00279-8.
- Jung MJ, Jeong E, Kim Y, Lee YS. Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors. J Ind Eng Chem, 19, 1315 (2013). http://dx.doi.org/10.1016/j.jiec.2012.12.034.
Cited by
- Effect of Halide Impregnation on Elemental Mercury Removal of Activated Carbons vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11062