DOI QR코드

DOI QR Code

Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Kyung Hoon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Bae, Tae-Sung (Korea Basic Science Institute (KBSI)) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2015.08.20
  • Accepted : 2015.12.20
  • Published : 2016.01.31

Abstract

Keywords

References

  1. Calvo M, García R, Arenillas A, Suárez I, Moinelo SR. Carbon foams from coals: a preliminary study. Fuel, 84, 2184 (2005). http://dx.doi.org/10.1016/j.fuel.2005.06.008.
  2. Liu H, Li T, Wang X, Zhang W, Zhao T. Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches. J Anal Appl Pyrolysis, 110, 442 (2014). http://dx.doi.org/10.1016/j.jaap.2014.10.015.
  3. Park MS, Lee SE, Kim MI, Lee YS. CO2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity. Carbon Lett, 16, 45 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.045.
  4. Sanchez-Coronado J, Chung DDL. Thermomechanical behavior of a graphite foam. Carbon, 41, 1175 (2003). http://dx.doi.org/10.1016/s0008-6223(03)00025-3.
  5. Singh M, Asthana R, Smith CE, Gyekenyesi AL. Integration of Cu-clad-Mo to high conductivity graphite foams. Curr Appl Phys, 12, S116 (2012). http://dx.doi.org/10.1016/j.cap.2012.02.033.
  6. Choi JY, Park SJ. Effect of manganese dioxide on supercapacitive behaviors of petroleum pitch-based carbons. J Ind Eng Chem, 29, 408 (2015). http://dx.doi.org/10.1016/j.jiec.2015.04.022.
  7. Johnson MT, Childers AS, Ramírez-Rico J, Wang H, Faber KT. Thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition. Compos Part A Appl Sci Manuf, 53, 182 (2013). http://dx.doi.org/10.1016/j.compositesa. 2013.06.009.
  8. Zhai L, Liu X, Li T, Feng Z, Fan Z. Vacuum and ultrasonic coassisted electroless copper plating on carbon foams. Vacuum, 114, 21 (2015). http://dx.doi.org/10.1016/j.vacuum.2014.12.005.
  9. Isani G, Falcioni ML, Barucca G, Sekar D, Andreani G, Carpenè E, Falcioni G. Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf, 97, 40 (2013). http://dx.doi.org/10.1016/j.ecoenv.2013.07.001.
  10. Mishra A, Dwivedi J, Shukla K, Malviya P. X-Ray diffraction and Fourier transformation infrared spectroscopy studies of copper (II) thiourea chloro and sulphate complexes. J Phys Conf Ser, 534, 012014 (2014). http://dx.doi.org/10.1088/1742-6596/534/1/012014.
  11. Han MS, Lee BG, Ahn BS, Moon DJ, Hong SI. Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and Co-TPD analyses. Appl Surf Sci, 211, 76 (2003). http://dx.doi.org/10.1016/S0169-4332(03)00177-6.
  12. Schrank C, Schwarz B, Eisenmenger-Sittner C, Mayerhofer K, Neubauer E. Influence of thermal treatment on the adhesion of copper coatings on carbon substrates. Vacuum, 80, 122 (2005). http://dx.doi.org/10.1016/j.vacuum.2005.07.031.
  13. Bittencourt C, Ke X, Van Tendeloo G, Thiess S, Drube W, Ghijsen J, Ewels CP. Study of the interaction between copper and carbon nanotubes. Chem Phys Lett, 535, 80 (2012). http://dx.doi.org/10.1016/j.cplett.2012.03.045.
  14. Guo R, Zhen W, Pan W, Zhou Y, Hong J, Xu H, Jin Q, Ding CG, Guo SY. Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. J Ind Eng Chem, 20, 1577 (2014). http://dx.doi.org/10.1016/j.jiec.2013.07.051.
  15. Thouchprasitchai N, Luengnaruemitchai A, Pongstabodee S. Water-gas shift reaction over Cu–Zn, Cu–Fe, and Cu–Zn–Fe composite-oxide catalysts prepared by urea-nitrate combustion. J Ind Eng Chem, 19, 1483 (2013). http://dx.doi.org/10.1016/j.jiec.2013.01.012.
  16. Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang C, Lv M, Yang X. Three-dimentional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci, 36, 137 (2014).
  17. Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 4, 4324 (2010). http://dx.doi.org/10.1021/nn101187z.
  18. Hu H, Zhao Z, Gogotsi Y, Qiu J. Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett, 1, 214 (2014). http://dx.doi.org/10.1021/ez500021w.
  19. Almajali M, Lafdi K, Prodhomme PH, Ochoa O. Mechanical properties of copper-coated carbon foams. Carbon, 48, 1604 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.060.
  20. Lafdi K, Almajali M, Huzayyin O. Thermal properties of coppercoated carbon foams. Carbon, 47, 2620 (2009). http://dx.doi.org/10.1016/j.carbon.2009.05.014.
  21. Kumar R, Kumari S, Dhakate SR. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl Nanosci, 5, 553 (2015). http://dx.doi.org/10.1007/s13204-014-0349-7.
  22. James L, Austin S, Moore CA, Stephens D, Walsh KK, Dale Wesson G. Modeling the principle physical parameters of graphite carbon foam. Carbon, 48, 2418 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.043.
  23. Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett, 6, 247 (2011). http://dx.doi.org/10.1186/1556-276X-6-247.

Cited by

  1. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites vol.7, pp.8, 2017, https://doi.org/10.3390/coatings7080121
  2. Chemical assembling of amine functionalized boron nitride nanotubes onto polymeric nanofiber film for improving their thermal conductivity vol.8, pp.8, 2018, https://doi.org/10.1039/C7RA11808B