DOI QR코드

DOI QR Code

The Effect of Rotating Magnetic Field on Enterotoxin Genes Expression in Staphylococcus Aureus Strains

  • Fijalkowski, Karol (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Peitler, Dorota (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Zywicka, Anna (Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology) ;
  • Rakoczy, Rafal (Department of Chemical Engineering, West Pomeranian University of Technology)
  • Received : 2016.01.29
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

Staphylococcus aureus cultures exposed to rotating magnetic field (RMF) were studied in order to analyse the possible induced changes in staphylococcal enterotoxin genes (se) expression. Liquid cultures of S. aureus strains carrying different se were exposed to the RMF of magnetic frequency 50 Hz and magnetic induction 34 mT for 10 h at $37^{\circ}C$. Three time points of bacterial growth cycle were considered for RNA extractions. Gene expression analyses were evaluated using real-time quantitative PCR method. The present study confirmed, that the RMF can stimulate the growth rate of S. aureus cultures in comparison to the unexposed controls, while the stimulation is not strain dependent. The studies have also shown, that the RMF, depending on the exposure time but regardless the bacterial strain, can influence on the expression of various se. In general, except for sea, as a result of bacterial exposure to the RMF through subsequent growth phases, the expression of se decreased, reaching the values below results recorded for unexposed controls. In the case of sea expression remained at a lower level as compared to the control, regardless the time of exposition.

Keywords

References

  1. H. Lin, M. Opler, M. Head, M. Blank, and R. Goodman, J. Cell. Biochem. 66, 482 (1997). https://doi.org/10.1002/(SICI)1097-4644(19970915)66:4<482::AID-JCB7>3.0.CO;2-H
  2. J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida-Jones, and W. R. Adey, Biochem. Biophys. Acta. 1132, 140 (1992).
  3. H. Lin, M. Blank, M. Jin, and R. Goodman, Bioelectrochem. Bioenerg. 39, 215 (1996). https://doi.org/10.1016/0302-4598(95)05040-X
  4. R. Goodman and M. Blank, J. Cell. Physiol. 192, 16 (2002). https://doi.org/10.1002/jcp.10098
  5. L. Fojt, P. Klapetek, L. Strasak, and V. Vetterl, Micron. 40, 18 (2009).
  6. F. D. Matl, A. Obermeier, J. Zlotnyk, W. Friess, A. Stemberger, and R. Burgkart, Bioelectromagnetics 32, 367 (2011). https://doi.org/10.1002/bem.20667
  7. L. Potenza, L. Ubaldi, R. De Sanctis, R. De Bellis, L. Cucchiarini, and M. Dacha, Mutat. Res. 561, 53 (2004). https://doi.org/10.1016/j.mrgentox.2004.03.009
  8. Y. Le Loir, F. Baron, and M. Gautier, Gent. Mol. Res. 2, 63 (2003).
  9. M. A. Argudin, M. C. Mendoza, and M. Rosario-Rodicio, Toxins (Basel) 2, 1751 (2010). https://doi.org/10.3390/toxins2071751
  10. M. E. Marin, M. C. de la Rosa, and I. Cornejo, Appl. Environ. Microbiol. 58, 1067 (1992).
  11. J. Schelin, N. Wallin-Carlquist, M. Thorup Cohn, R. Lindqvist, G. C. Barker, and P. Radstrom, Virulence 2, 580 (2011). https://doi.org/10.4161/viru.2.6.18122
  12. R. Rakoczy, Chem. Eng. Process. 66, 1 (2013). https://doi.org/10.1016/j.cep.2013.01.012
  13. D. R. Patrick and S. W. Fardo, Rotating Electrical Machines and Power Systems (2nd ed.) Fairmont Press USA (1997) pp. 279-324.
  14. J. F. Jr Karkos, and R. Flanary, CA 2505561 A1 (2003).
  15. J. F. Jr Karkos, and R. Flanary, US 20100214867 A1 (2009).
  16. J. F. Jr Karkos, and R. Flanary, DE 60317091 D1 (2003).
  17. D. Wu, X. Li, Y. Yang, Y. Zheng, C. Wang, L. Deng, L. Liu, C. Li, Y. Shang, C. Zhao, S. Yu, and X. Shen, J. Med. Microbiol. 60, 35 (2011). https://doi.org/10.1099/jmm.0.023465-0
  18. M. Kuroda, T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N.K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu, Lancet 21, 1225 (2001).
  19. S. Holtfreter, D. Grumann, M. Schmudde, N. T. Nguyen, P. Eichler, B. Strommenger, K. Kopron, J. Kolata, S. Giedrys-Kalemba, I. Steinmetz, W. Witte, and B. M. Broker, J. Clin. Microbiol. 45, 2669 (2007). https://doi.org/10.1128/JCM.00204-07
  20. K. Fijalkowski, P. Nawrotek, M. Struk, M. Kordas, and R. Rakoczy, J. Magn. 18, 289 (2013). https://doi.org/10.4283/JMAG.2013.18.3.289
  21. M. Duquenne, I. Fleurot, M. Aigle, C. Darrigo, E. Borezee-Durant, S. Derzelle, M. Bouix V. Deperrois-Lafarge, and A. Delacroix-Buchet, Appl. Environ. Microbiol. 76, 1367 (2010). https://doi.org/10.1128/AEM.01736-09
  22. S. Derzelle, F. Dilasser, M. Duquenne, and V. Deperrois, Food Microbiol. 26, 896 (2009). https://doi.org/10.1016/j.fm.2009.06.007
  23. M. W. Pfaffl, A. Tichopad, C. Prgomet, and T. P. Neuvians, Biotechnol. Lett. 26, 509 (2004). https://doi.org/10.1023/B:BILE.0000019559.84305.47
  24. J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman, Genome Biol. 3, 34 (2002).
  25. J. Filipic, B. Kraigher, B. Tepus, V. Kokol, and I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012). https://doi.org/10.1016/j.biortech.2012.06.023
  26. G. Giorgi, P. Marcantonio, F. Bersani, E. Gavoci, and B. Del Re, Int. J. Radiat. Biol. 87, 601 (2011). https://doi.org/10.3109/09553002.2011.570855
  27. L. Potenza, L. Cucchiarini, E. Piatti, U. Angelini, and M. Dacha, Bioelectromagnetics 25, 352 (2004). https://doi.org/10.1002/bem.10206
  28. S. H. Li and K. C. Chow, Biochem. Biophys. Res. Commun. 280, 1385 (2001). https://doi.org/10.1006/bbrc.2001.4286
  29. W. R. Schwan, L. Lehmann, and J. McCormick, Infect. Immun. 74, 399 (2006). https://doi.org/10.1128/IAI.74.1.399-409.2006
  30. S. F. Pereira, A. O. Henriques, M. G. Pinho, H. De Lencastre, and A. Tomasz, J. Bacteriol. 189, 3525 (2007). https://doi.org/10.1128/JB.00044-07
  31. Y. Chien, A. C. Manna, S. J. Projan, and A. L. Cheung, J. Biol. Chem. 274, 37169 (1999). https://doi.org/10.1074/jbc.274.52.37169
  32. C. Goerke, M. G. Bayer, and C. Wolz, Clin. Diagn. Lab. Immunol. 8, 279 (2001).
  33. O. Thellin, W. Zorzi, B. Lakaye, B. De Borman, B. Coumans, G. Hennen, T. Grisar, A. Igout, and E. Heinen, J. Biotechnol. 75, 291 (1999). https://doi.org/10.1016/S0168-1656(99)00163-7
  34. K. Dheda, J. F. Huggett, S. A. Bustin, M. A. Johnson, G. Rook, and A. Zumla, Biotechniques 37, 118 (2004).
  35. S. J. Vandecasteele, W. E. Peetermans, R. Merckx, and J. Van Eldere, J. Bacteriol. 183, 7094 (2001). https://doi.org/10.1128/JB.183.24.7094-7101.2001
  36. M. T. Tremaine, D. K. Brockman, and M. J. Betley, Infect. Immun. 61, 356 (1993).
  37. L. B. Regassa, J. L. Couch, and M. J. Betley, Infect. Immun. 59, 955 (1991).
  38. S. Even, C. Charlier, S. Nouaille, N. L. Ben Zakour, M. Cretenet, F. J. Cousin, M. Gautier, M. Cocaign-Bousquet, P. Loubiere, and Y. Le Loir, Appl. Environ. Microbiol. 75, 4459 (2009). https://doi.org/10.1128/AEM.02388-08