DOI QR코드

DOI QR Code

The Effects of Nonmagnetic Bolus on Contralateral Breast Skin Dose during Tangential Breast Irradiation Therapy

  • Won, Young-Jin (Department of Radiation Oncology, Inje University, Iisan Paik Hospital) ;
  • Cho, Jae-Hwan (Department of Radiological Technology, Ansan College) ;
  • Kim, Sung-chul (Department of Radiological Science, Gachon University Medical Campus)
  • 투고 : 2015.11.23
  • 심사 : 2016.01.05
  • 발행 : 2016.03.31

초록

In this study the contralateral breast skin dose was decreased. It was to apply the results to the clinical study after analysis of different radiation dose amounts to contralateral breast with nonmagnetic bolus and without nonmagnetic bolus. A Rando phantom was computed tomography (CT) simulated, five treatment plans were generated: open tangents, open field in field, wedge 15, wedge 30, and intensity-modulated radiotherapy (IMRT) plan with 50.4 Gy to cover sufficient breast tissue. Contralateral breast skin dose was measured at 8 points using a glass dosimeter. The average contralateral breast dose using nonmagnetic bolus showed better excellence in decreasing the absorbed dose in the order of $168{\pm}11.1$ cGy, $131{\pm}10.2$ cGy (29%), $112{\pm}9.7$ cGy (49%), and $102{\pm}9.5$ cGy (64%) than changing the treatment plan. This study focused on decreasing the effect of scattered dose by use of a nonmagnetic bolus on the contralateral breast during radiotherapy in breast cancer patients and an intriguingly significant decrease was observed parallel to the opposed beam.

키워드

참고문헌

  1. Z. S. Kim, S. Y. Min, C. S. Yoon, H. J. Lee, J. S. Lee, H. J. Youn, H. K. Park, D. Y. Noh, and M. H. Hur, J. Breast Cancer. 17, 99 (2014). https://doi.org/10.4048/jbc.2014.17.2.99
  2. D. B. John, B. H. Elizabeth, B. Maria, S. Marilyn, and B. A. Flannery, N. Engl. J. Med. 326, 781 (1992). https://doi.org/10.1056/NEJM199203193261201
  3. G. Starkschall, F. J. George, and D. L. Zellmer, Med. Phys. 10, 906 (1983). https://doi.org/10.1118/1.595362
  4. T. M. Williams, J. M. Moran, S. H. Hsu, R. Marsh, B. Yanke, B. A. Fraass, and L. J. Pierce, Int. J. Radiation Oncology Biol. Phys. 82, 2079 (2012). https://doi.org/10.1016/j.ijrobp.2011.01.049
  5. Y. M. Moon, D. J. Rhee, J. K. Kim, Y. R. Kang, M. W. Lee, H. J. Lim, and D. H. Jeong, Korean J. Med. Phys. 24, 140 (2013).
  6. J. E. Lah, D. O. Shin, J. Y. Kim, H. S. Hong, C. I. Lim, H. G. Jeong, and T. S. Suh, J. Korea Asso. Radiat. Prot. 31, 181 (2006).
  7. Y. C. Lo, G. Yasuda, T. J. Fitzgerald, and A. U. Marcia, Int. J. Radiat. Oncol. Biol. Phys. 46, 187 (2000). https://doi.org/10.1016/S0360-3016(99)00382-X
  8. R. Ramani, S. Russell, and P. O'Brien, Int. J. Radiation Oncology Biol. Phys. 43, 245 (1999). https://doi.org/10.1016/S0360-3016(98)00341-1
  9. W. A. Beckham, C. C. Popescu, V. V. Patenaude, E. S. Wai, and I. A. Olivotto, Int. J. Radiation Oncology Biol. Phys. 69, 918 (2007). https://doi.org/10.1016/j.ijrobp.2007.06.060
  10. C. Arun, J. Can. Res. Ther. 3, 8 (2007). https://doi.org/10.4103/0973-1482.31964
  11. M. T. Kim, H. K. Lee, Y. C. Heo, and J. H. Cho, J. Magn. 19, 15 (2014). https://doi.org/10.4283/JMAG.2014.19.1.015
  12. J. H. Kim, M. S. Han, S. J. Yoo, K. J. Kim, and J. H. Cho, J. Magn. 20, 120 (2015). https://doi.org/10.4283/JMAG.2015.20.2.120
  13. J. H. Kim, and J. P. Hong, J. Magn. 20, 155 (2015). https://doi.org/10.4283/JMAG.2015.20.2.155
  14. A. K. Bhatnagar, E. Brandner, D. Sonnik, A. Wu, S. Kalnicki, M. Deutsch, and D. E. Heron Breast Cancer Res. Treat. 96, 41 (2006). https://doi.org/10.1007/s10549-005-9032-8