References
- Choi, J. S. (2011). Type I analysis by projections, The Korean Journal of Applied Statistics, 24, 373-381. https://doi.org/10.5351/KJAS.2011.24.2.373
- Choi, J. S. (2012). Type II analysis by projections, Journal of the Korean Data & Information Science Society, 23, 1155-1163. https://doi.org/10.7465/jkdi.2012.23.6.1155
- Choi, J. S. (2014). Projection analysis for two-way variance components, Journal of the Korean Data & Information Science Society, 23, 547-554.
- Corbeil, R. R. and Searle, S. R. (1976). A comparison of variance component estimators, Biometrics, 32, 779-791. https://doi.org/10.2307/2529264
- Elswick, K. R., Gennings, C. Jr., Chinchilli, M. V., and Dawson, S. K. (1991). A simple approach for finding estimable functions in linear models, The American Statistician, 45, 51-53.
- Graybill, F. A. (1976). Theory and Application of the Linear Model, Wadsworth, California.
- Hartley, H. O. (1967). Expectations, variances and covariances of ANOVA means squares by "synthesis", Biometrics, 23, 105-114. https://doi.org/10.2307/2528284
- Henderson, C. R. (1953). Estimation of variance and covariance components, Biometrics, 9, 226-252. https://doi.org/10.2307/3001853
- Hicks, C. R. (1973). Fundamental Concepts in the Design of Experiments, Holt, Rinehart and Winston, New York.
- Milliken, G. A. and Johnson, D. E. (1984). Analysis of Messy Data, Van Nostrand Reinhold, New York.
- Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components, Biometrics Bulletin, 2, 110-114. https://doi.org/10.2307/3002019
- Searle, S. R., Casella, G., and McCulloch, C. E. (1971). Linear Models, John Wiley and Sons, New York.
- Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components, John Wiley and Sons, New York.