DOI QR코드

DOI QR Code

Estimable functions of mixed models

혼합모형의 추정가능함수

  • Received : 2015.10.27
  • Accepted : 2016.01.19
  • Published : 2016.02.29

Abstract

This paper discusses how to establish estimable functions when there are fixed and random effects in design models. It proves that estimable functions of mixed models are not related to random effects. A fitting constants method is used to obtain sums of squares due to random effects and Hartley's synthesis is used to calculate coefficients of variance components. To test about the fixed effects the degrees of freedom associated with divisor are determined by means of the Satterthwaite approximation.

본 논문은 고정요인과 확률요인의 혼합모형에서 추정가능함수를 논의하고 있다. 고정효과모형에서 정의된 추정가능 함수가 혼합효과모형에서 어떻게 정의되어야 하는 가를 규정하고 추정가능함수의 분산추정치를 구하는 방법을 제시하고 있다. 또한 혼합모형에서 분산성분의 추정을 위한 제곱합의 계산에 상수적합법을 이용하고 추론을 위한 자유도의 계산에 Satterthwaite의 근사화를 다루고 있으며 분산성분을 구하기 위한 모형의 적합방식으로 단계별 방법을 적용하고 있다. 모형의 단계별 적합에서 주어지는 모형행렬의 사영을 이용한 제1종 제곱합의 계산방식이 제공되며 사영을 이용한 변동요인별 제1종 제곱합의 기댓값 계산에 Hartley의 합성법이 논의된다.

Keywords

References

  1. Choi, J. S. (2011). Type I analysis by projections, The Korean Journal of Applied Statistics, 24, 373-381. https://doi.org/10.5351/KJAS.2011.24.2.373
  2. Choi, J. S. (2012). Type II analysis by projections, Journal of the Korean Data & Information Science Society, 23, 1155-1163. https://doi.org/10.7465/jkdi.2012.23.6.1155
  3. Choi, J. S. (2014). Projection analysis for two-way variance components, Journal of the Korean Data & Information Science Society, 23, 547-554.
  4. Corbeil, R. R. and Searle, S. R. (1976). A comparison of variance component estimators, Biometrics, 32, 779-791. https://doi.org/10.2307/2529264
  5. Elswick, K. R., Gennings, C. Jr., Chinchilli, M. V., and Dawson, S. K. (1991). A simple approach for finding estimable functions in linear models, The American Statistician, 45, 51-53.
  6. Graybill, F. A. (1976). Theory and Application of the Linear Model, Wadsworth, California.
  7. Hartley, H. O. (1967). Expectations, variances and covariances of ANOVA means squares by "synthesis", Biometrics, 23, 105-114. https://doi.org/10.2307/2528284
  8. Henderson, C. R. (1953). Estimation of variance and covariance components, Biometrics, 9, 226-252. https://doi.org/10.2307/3001853
  9. Hicks, C. R. (1973). Fundamental Concepts in the Design of Experiments, Holt, Rinehart and Winston, New York.
  10. Milliken, G. A. and Johnson, D. E. (1984). Analysis of Messy Data, Van Nostrand Reinhold, New York.
  11. Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components, Biometrics Bulletin, 2, 110-114. https://doi.org/10.2307/3002019
  12. Searle, S. R., Casella, G., and McCulloch, C. E. (1971). Linear Models, John Wiley and Sons, New York.
  13. Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components, John Wiley and Sons, New York.