DOI QR코드

DOI QR Code

Adaptive lasso in sparse vector autoregressive models

Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택

  • Lee, Sl Gi (Department of Statistics, Sungkyunkwan University) ;
  • Baek, Changryong (Department of Statistics, Sungkyunkwan University)
  • 이슬기 (성균관대학교 통계학과) ;
  • 백창룡 (성균관대학교 통계학과)
  • Received : 2015.10.27
  • Accepted : 2015.11.30
  • Published : 2016.02.29

Abstract

This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

본 논문은 다차원의 시계열 자료 분석에서 효율적인 희박벡터자기회귀모형에서의 모수 추정에 대해서 연구한다. 희박벡터자기회귀모형은 영에 가까운 계수를 정확이 영으로 둠으로써 희박성을 확보한다. 따라서 변수 선택과 모수 추정을 한꺼번에 할 수 있는 lasso를 이용한 방법론을 희박벡터자기회귀모형의 추정에 쓸 수 있다. 하지만 Davis 등(2015)에서는 모의실험을 통해 일반적인 lasso의 경우 영이아닌 계수를 참값보다 훨씬 더 많이 찾아 희박성에 약점이 있음을 보고하였다. 이에 따라 본 연구는 희박벡터자기회귀모형에 adaptive lasso를 이용하면 일반 lasso보다 희박성을 비롯한 전반적인 모수의 추정이 매우 유의하게 개선됨을 보인다. 또한 adaptive lasso에서 쓰이는 튜닝 모수들에 대한 선택도 아울러 논의한다.

Keywords

References

  1. Arnold, A., Liu, Y., and Abe, N. (2008). Temporal causal modeling with graphical Granger methods, In Proceedings of the 13th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining.
  2. Cule, E., De Iorio, M. (2013). Ridge regression in prediction problems: automatic choice of the ridge parameter, Genetic Epidemiology, 37, 704-714. https://doi.org/10.1002/gepi.21750
  3. Identification of synaptic connections in neural ensembles by graphical models, Journal of Neuroscience Methods, 77, 93-107. https://doi.org/10.1016/S0165-0270(97)00100-3
  4. Davis, R. A., Zang, P., and Zheng, T. (2015). Sparse vector autoregressive modeling, arXiv:1207.0520. Econometrica, 37, 424-438.
  5. Hastie, T., Tibshirani, R., Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations, CRC press.
  6. Huang, J., Ma, S., and Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models, Statistica Sincia, 18, 1608-1618.
  7. Hsu, N.-J., Hung, H.-L., and Chang, Y.-M. (2008). Subset selection for vector autoregressive processes using lasso, Computational Statistics & Data Analysis, 52, 3645-3657. https://doi.org/10.1016/j.csda.2007.12.004
  8. Lozano, A. C., Abe, N., Liu, Y., and Rosset, S. (2009). Grouped graphical Granger modeling for gene expression regulatory networks discovery, Bioinformatics, 25, 110-118. https://doi.org/10.1093/bioinformatics/btp199
  9. Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin.
  10. Song, S. and Bickel, P. J. (2011). Large vector auto regressions, arXiv:1106.3915.
  11. Sims, C. A. (1980). Macroeconomics and reality, Econometrica: Journal of the Econometric Society, 1-48.
  12. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288.
  13. Zhang, J., Jeng, X. J., and Liu, H. (2008). Some Two-Step Procedures for Variable Selection in High-Dimensional Linear Regression, arXiv:0810.1644.
  14. Zou, H. (2006). Adaptive lasso and its oracle properties, Journal of American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735