DOI QR코드

DOI QR Code

The Effects of the Content of Isobornyl Methacrylate in Acrylate Copolymers on Physical Properties

아크릴계 공중합체에서 이소보닐 메타크릴레이트의 함량에 의한 물리적 특성 변화

  • Kim, Ki Sang (Department of Biochemical Engineering, College of Engineering Gangneungwonju National University) ;
  • Shim, Sang-Yeon (Department of Biochemical Engineering, College of Engineering Gangneungwonju National University)
  • 김기상 (강릉원주대학교 공과대학 생명화학공학과) ;
  • 심상연 (강릉원주대학교 공과대학 생명화학공학과)
  • Received : 2016.09.09
  • Accepted : 2016.12.27
  • Published : 2016.12.30

Abstract

The acrylate copolymer having good thermal stability, coating and adhesion properties was designed and prepared. We prepared copolymers in >95% high yield using methyl methacrylate, isobornyl methacrylate and 2-hydroxyethyl methacrylate monomers by the bulk and emulsion polymerization techniques. The $^1H$-NMR spectrum was used to identify chemical structure and glass transition temperatures increased from $123^{\circ}C$ to $140^{\circ}C$ confirmed by DSC, DMA and TGA analysis. In addition, as the content of IBMA increased, storage modulus and thermal decomposition temperature increased. As the content of IBMA increased from 10% to 30% in the composition for the entire monomer, tensile strength increased from 22 to 30 MPa in both polymers prepared by bulk and emulsion techniques. The contact angle increased from 70 to up to 88 degrees due to hydrophobic property of IBMA.

내열, 코팅 및 접착특성이 우수한 아크릴계 공중합체를 설계, 제조하였다. 공중합체용 모노머로 methyl methacrylate(MMA), isobornyl methacrylate(IBMA) 그리고 2-hydroxyethyl methacrylate(HEMA)를 사용하여 괴상 중합 및 유화 중합으로 반응하여 > 95%이상 고수율로 중합체를 제조하였다. $^1H$-NMR로 화학구조를 확인하였고 DSC, DMA, TGA분석으로 내열성을 확인한 결과 유리전이온도가 $123^{\circ}C$이상 $140^{\circ}C$까지 높게 나타났다. 또한, IBMA성분이 증가함에 따라 저장 탄성율, 열분해온도 모두 증가하였다. 인장강도는 IBMA의 함량이 전체 모노머 조성물중 10%에서 30%로 증가함에 따라 괴상 및 유화 중합체 모두에서 22에서 30 MPa로 강도가 증가하였으며 IBMA의 소수성 특성으로 접촉각은 70도에서 88도까지 증가함을 확인하였다.

Keywords

References

  1. S.H. Cho, S.R. White, and P.V. Braun, Self-healing polymer coating, Advanced Materials, 21(6), 645 (2009). https://doi.org/10.1002/adma.200802008
  2. P.A. Levkin, F.Svec, and J.M.J. Frechet, Polous polymer coatings, Advanced Functional Materials, 19(12), 1993 (2009). https://doi.org/10.1002/adfm.200801916
  3. D. Zahner, J. Abagat, F. Svec, J.M.J. Frechet, and P.A. Levkin, A facial approach to superhydrophilic-superhydrophobic patterns in porous polymer films, Advanced Materials, 23(27), 3030 (2011). https://doi.org/10.1002/adma.201101203
  4. C.K. Tan, and D.J. Blackwood, Corrosion protection by multilayered conducting polymer coatings, Corrosion Science, 45(3) 545 (2003). https://doi.org/10.1016/S0010-938X(02)00144-0
  5. R.J. Varley, and K.H. Leong, Polymer coatings for oilfield pipelines, Active Polymer Coating, 233, 385 (2016).
  6. P. Kotlink, K. Doubravova, J. Horalek, L. Kubac, and J. Akrman, Acrylic copolymer coatings for protection against UV rays, J. of Cultural Heritage, 15(1) 44 (2014). https://doi.org/10.1016/j.culher.2013.01.002
  7. T.V. Nguyen, P.N. Tri, T.D. Nguyen, R.E. Aidani, V.T. Trinh, and C. Decker, Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings, Polymer Degradation and Stability, 128, 65 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.03.002
  8. E.C. Hulmer, Notes on the formulation and application on acrylic coatings, Studies in Conservation, 17, 211 (2015).
  9. Z. Zhang, J. Chao, and F. Chu, Study on the synthesis and property of water-based UV-curable epoxy acrylate with low viscosity, Advanced graphic communication, Packaging Technology and Materials, 369, 941 (2015).
  10. M. Sangermano, A. Chiolerio, and G. Marti, P. Martino, UV-cured acrylic conductive inks for microelectronic devices, Macromolecular Materials and Engineering, 298(6) 607 (2012). https://doi.org/10.1002/mame.201200072
  11. M. Sangermano, a. Vitale, N. Razza, A. Favetto, M. Paleari, and P. Ariano, Multilayer UV-cured organic capacitors, Polymer, 56(15) 131 (2015). https://doi.org/10.1016/j.polymer.2014.11.021
  12. J. Zhao, W. Millians, S. Tang, T. Wu, L. Zhu, and W. Ming, Self-stratified antimicrobial acrylic coatings via one-step UV curing, ACS Appl. Mater. Interfaces, 7(33) 18467 (2015). https://doi.org/10.1021/acsami.5b04633
  13. M.R. Chashmejahanbin, A. Salimi, and A.E. Langroudi, The study of the coating adhesion on PP surface modified in different plasma/acrylic acid solution, International J. of Adhesion and Adhesives, 49, 44 (2014). https://doi.org/10.1016/j.ijadhadh.2012.09.008
  14. J. Friedrich, L. Wigant, W. Unger, A. Lippitz, H. Wittrich, and D. Prescher, Barrier properties of plasma-modified PP and PET, J. Adhes. Sci. Technol., 9, 1165 (1995). https://doi.org/10.1163/156856195X00978
  15. F. Awaja, M. Gilbert, G. Kelly, B. Fox, and P.J. Pigram, Adhesion of polymers, Progress Polym. Sci., 34, 948 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.007