DOI QR코드

DOI QR Code

Effects of Electrodeposition Parameters on Electrochemical Hydroxyl Radical Evolution of PbO2 Electrode

이산화납 전극 제조 시 전기화학적 증착인자가 수산화라디칼 발생에 미치는 영향

  • Shim, Soojin (Asia Institute of Energy, Environment and Sustainability (AIEES), Seoul National University) ;
  • Yoon, Jeyong (Asia Institute of Energy, Environment and Sustainability (AIEES), Seoul National University)
  • 심수진 (서울대학교 아시아에너지환경지속가능발전연구소) ;
  • 윤제용 (서울대학교 아시아에너지환경지속가능발전연구소)
  • Received : 2016.11.02
  • Accepted : 2016.12.13
  • Published : 2016.12.31

Abstract

Lead dioxide ($PbO_2$) is an electrode material that is effective for organic pollutant degradation based on hydroxyl radical ($^{\bullet}OH$) attack. Representative parameters for $PbO_2$ electrodeposition are summarized to current, temperature, reaction time, concentration of Pb(II) and electrolyte agent. In this study, $Ti/PbO_2$ electrodes were fabricated by electrodeposition method under controlled reaction time, current density, temperature, concentration of $HNO_3$ electrolyte. Effects of deposition parameters on $^{\bullet}OH$ evolution were investigated in terms of electrochemical bleaching of p-Nitrosodimethylaniline (RNO). As major results, the $^{\bullet}OH$ evolution was promoted at the $PbO_2$ that was deposited in longer reaction time (1-90 min), lower current density ($0.5-50mA/cm^2$), higher temperature ($5-65^{\circ}C$) and lower $HNO_3$ concentration (0.01-1.0 M). Especially, the $PbO_2$ which was deposited in 0.01 M of lowest $HNO_3$ concentration by applying $20mA/cm^2$ for above 10 min was most effective on $^{\bullet}OH$ evolution. The performance gap between $PbO_2$s that was best and worst in $^{\bullet}OH$ evolution was about 41%. Among the properties of $PbO_2$ related on $^{\bullet}OH$ evolution performance, conductivity of $Ti/PbO_2$ significantly influenced on $^{\bullet}OH$ evolution. The increase in conductivity promoted $^{\bullet}OH$ evolution. In addition, the increase in crystal size of $PbO_2$ interfered $^{\bullet}OH$ evolution at surface of some $PbO_2$ deposits.

Lead dioxide ($PbO_2$)는 전기화학적 고도산화공정(electrochemical advanced oxidation process, EAOP)에서 hydroxyl radical ($^{\bullet}OH$) 발생에 기반한 유기오염물 분해에 효과적인 전극물질이다. $PbO_2$ 전극의 대표적인 제조방법인 전기화학적 증착법(electrodeposition)의 주요 인자로는 전류/전압세기, 온도, 반응시간, Pb(II)의 농도, 전해질 종류 및 농도가 있다. 본 연구에서는 $Ti/PbO_2$ 산화전극을 전기화학적 증착법을 통해 전류인가 시간, 전류밀도, 온도, $HNO_3$ 전해질 농도를 각각 조절하여 제조하였고, $^{\bullet}OH$ 검출물질인 p-Nitrosodimethylaniline (RNO)의 전기화학적 탈색 측면에서 $^{\bullet}OH$ 발생에 대한 $PbO_2$ 증착인자의 영향을 조사하였다. 주요 결과로, $PbO_2$$^{\bullet}OH$ 발생 성능은 $PbO_2$ 증착과정에서 대체로 전류인가 시간이 길어질수록(1-90 min), 전류밀도가 감소할수록($0.5-50mA/cm^2$), 증착온도가 증가할수록($5-65^{\circ}C$), $HNO_3$ 전해질 농도(0.01-1.0 M)가 감소할수록 향상되었다. 특히, 0.01 M의 낮은 $HNO_3$ 농도 상에서 $20mA/cm^2$ 전류를 10분 이상 인가하여 증착시킨 $PbO_2$에서$^{\bullet}OH$ 발생이 가장 촉진되었다. RNO 탈색속도 측면에서 가장 성능이 좋은 $PbO_2$와 저조한 $PbO_2$ 사이에 최대 41% 정도 차이가 나타났다. $PbO_2$$^{\bullet}OH$ 발생 성능을 결정짓는 특성으로 $PbO_2$ 층 전도도, Ti 기판 산화, $PbO_2$ 결정크기를 고려한 결과, $PbO_2$ 층의 전도도 및 Ti 기판의 산화가 $^{\bullet}OH$ 발생에 주요하게 영향을 미치는 것으로 확인되었다. $PbO_2$ 층의 전도도 향상과 Ti 표면 산화 억제로 인한 $Ti/PbO_2$ 계면에서 전도도 향상이 $^{\bullet}OH$ 발생을 촉진시키는 효과를 가져왔다. 그리고 일부 전극에서는 표면에서 $PbO_2$ 결정 크기 증가가 $^{\bullet}OH$ 발생을 저감시키는 역할을 하였다.

Keywords

References

  1. Jeong, J., Kim, J. Y. and Yoon, J., "The Role of Reactive Oxygen Species in the Electrochemical Inactivation of Microorganisms," Environ. Sci. Technol., 40(19), 6117-6122 (2006). https://doi.org/10.1021/es0604313
  2. Martinez-Huitle, C. A. and Ferro, S., "Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes," Chem. Soc. Rev., 35(12), 1324-1340 (2006). https://doi.org/10.1039/B517632H
  3. Jeong, J., Kim, C. and Yoon, J., "The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes," Water Res., 43(4), 895-901(2009). https://doi.org/10.1016/j.watres.2008.11.033
  4. Panizza, M. and Cerisola, G., "Direct And Mediated Anodic Oxidation of Organic Pollutants," Chem. Rev., 109(12), 6541-6569(2009). https://doi.org/10.1021/cr9001319
  5. Cao, J., Zhao, H., Cao, F., Zhang, J. and Cao, C., "Electrocatalytic degradation of 4-chlorophenol on F-doped $PbO_2$ anodes," Electrochim. Acta., 54(9), 2595-2602(2009). https://doi.org/10.1016/j.electacta.2008.10.049
  6. Martínez-Huitle, C. A., Quiroz, M. A., Comninellis, C., Ferro, S. and Battisti, A. D., "Electrochemical incineration of chloranilic acid using $Ti/IrO_2$, Pb/$PbO_2$ and Si/BDD electrodes," Electrochim. Acta., 50(4), 949-956(2004). https://doi.org/10.1016/j.electacta.2004.07.035
  7. Babak, A. A., Amadelli, R., De Battisti, A., Fateev, V. N., "Influence of anions on oxygen/ozone evolution on $PbO_2$/spe and $PbO_2$/Ti electrodes in neutral pH media," Electrochim. Acta., 39(11-12), 1597-1602(1994). https://doi.org/10.1016/0013-4686(94)85141-7
  8. Da Silva, L. M., De Faria, L. A. and Boodts, J. F. C., "Green processes for environmental application Electrochemical ozone production," Pure. Appl. Chem., 73(12), 1871-1884(2001). https://doi.org/10.1351/pac200173121871
  9. Aquino, J. M., Pereira, G. F., Rocha-Filho, R. C., Bocchi, N. and Biaggio, S. R., "Electrochemical degradation of a real textile effluent using boron-doped diamond or ${\beta}-PbO_2$ as anode," J. Hazard. Mater., 192(3), 1275-1282(2011). https://doi.org/10.1016/j.jhazmat.2011.06.039
  10. Ciriaco, L., Anjo, C., Correia, J., Pacheco, M. J. and Lopes, A., "Electrochemical degradation of Ibuprofen on Ti/Pt/$PbO_2$ and Si/BDD electrodes," Electrochim. Acta., 54(5), 1464-1472(2009). https://doi.org/10.1016/j.electacta.2008.09.022
  11. Flox, C., Arias, C., Brillas, E. and Savall, A., "Groenen-Serrano, K., Electrochemical incineration of cresols: A comparative study between $PbO_2$ and boron-doped diamond anodes," Chemosphere., 74(10), 1340-1347(2009). https://doi.org/10.1016/j.chemosphere.2008.11.050
  12. Gherardini, L., Michaud, P. A., Panizza, M., Comninellis, C. and Vatistas, N., "Electrochemical Oxidation of 4-Chlorophenol for Wastewater Treatment: Definition of Normalized Current Efficiency ($\Phi$)," J. Electrochem. Soc., 148(6), D78-D82(2001). https://doi.org/10.1149/1.1368105
  13. Hmani, E., Chaabane Elaoud, S., Samet, Y. and Abdelhedi, R., "Electrochemical degradation of waters containing OToluidine on $PbO_2$ and BDD anodes," J. Hazard. Mater., 170(2-3), 928-933(2009). https://doi.org/10.1016/j.jhazmat.2009.05.058
  14. Martinez-Huitle, C. A., De Battisti, A., Ferro, S., Reyna, S., Cerro-Lopez, M. and Quiro, M. A., "Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation using Pb/$PbO_2$, $Ti/SnO_2$, and Si/BDD Electrodes," Environ. Sci. Technol., 42(18), 6929-6935(2008). https://doi.org/10.1021/es8008419
  15. Panizza, M. and Cerisola, G., "Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments," Electrochim. Acta., 48(23), 3491-3497(2003). https://doi.org/10.1016/S0013-4686(03)00468-7
  16. Panizza, M., Cerisola, G., "Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater," Environ. Sci. Technol., 38(20), 5470-5475(2004). https://doi.org/10.1021/es049730n
  17. Panizza, M. and Cerisola, G., "Electrochemical Degradation of Methyl Red Using BDD and $PbO_2$ Anodes," Ind. Eng. Chem. Res., 47(18), 6816-6820(2008). https://doi.org/10.1021/ie8001292
  18. Sires, I., Brillas, E., Cerisola, G. and Panizza, M., "Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and $PbO_2$ as high oxidation power anodes," J. Electroanal. Chem., 613(2), 151-159(2008). https://doi.org/10.1016/j.jelechem.2007.10.023
  19. Zhu, X., Tong, M., Shi, S., Zhao, H. and Ni, J., "Essential Explanation of the Strong Mineralization Performance of Boron-Doped Diamond Electrodes," Environ. Sci. Technol., 42(13), 4914-4920(2008). https://doi.org/10.1021/es800298p
  20. Carr, J. P. and Hampson, N. A., "Lead dioxide electrode," Chem. Rev., 72(6), 679-703(1972). https://doi.org/10.1021/cr60280a003
  21. Li, X., Pletcher, D. and Walsh, F. C., "Electrodeposited lead dioxide coatings," Chem. Soc. Rev., 40(7), 3879-3894(2011). https://doi.org/10.1039/c0cs00213e
  22. Mohd, Y. and Pletcher, D., "The Influence of Deposition Conditions and Dopant Ions on the Structure, Activity, and Stability of Lead Dioxide Anode Coatings," J. Electrochem. Soc., 152(6), D97-D102(2005). https://doi.org/10.1149/1.1897366
  23. Munichandraiah, N., "Physicochemical properties of electrodeposited${\beta}$- lead dioxide: Effect of deposition current density," J. Appl. Electrochem., 22(9), 825-829(1992). https://doi.org/10.1007/BF01023725
  24. Sires, I., Low, C. T. J., Ponce-de-Leon, C. and Walsh, F. C., "The characterisation of $PbO_2$-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," Electrochim. Acta., 55(6), 2163-2172(2010). https://doi.org/10.1016/j.electacta.2009.11.051
  25. Velichenko, A. B., Amadelli, R., Benedetti, A., Girenko, D. V., Kovalyov, S. V. and Danilov, F. I., "Electrosynthesis and Physicochemical Properties of $PbO_2$ Films," J. Electrochem. Soc., 149(9), C445-C449(2002). https://doi.org/10.1149/1.1495498
  26. Comninellis, C., "Electrocatalysis in the electrochemical conversion/ combustion of organic pollutants for waste water treatment," Electrochim. Acta., 39(11-12), 1857-1862(1994). https://doi.org/10.1016/0013-4686(94)85175-1
  27. Wabner, D. and Grambow, C., "Reactive intermediates during oxindation of water lead dioxide and platinum electrodes," J. Electroanal. Chem. Interf. Electrochem., 195(1), 95-108 (1985). https://doi.org/10.1016/0022-0728(85)80008-5
  28. Muff, J., Bennedsen, L. R. and Sogaard, E. G., "Study of electrochemical bleaching of p-nitrosodimethylaniline and its role as hydroxyl radical probe compound," J. Appl. Electrochem., 41(5), 599-607(2011). https://doi.org/10.1007/s10800-011-0268-1
  29. Simonsen, M. E., Muff, J., Bennedsen, L. R., Kowalski, K. P. and Sogaard, E. G., "Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies," J. Photoch. Photobio. A., 216(2-3), 244-249(2010). https://doi.org/10.1016/j.jphotochem.2010.07.008
  30. Andrade, L. S., Rocha-Filho, R. C., Bocchi, N., Biaggio, S. R., Iniesta, J., Garcia-Garcia, V. and Montiel, V., "Degradation of phenol using Co- and Co, F-doped $PbO_2$ anodes in electrochemical filter-press cells," J. Hazard. Mater., 153 (1-2), 252-260(2008). https://doi.org/10.1016/j.jhazmat.2007.08.046
  31. Lin, H., Niu, J., Xu, J., Huang, H., Li, D., Yue, Z. and Feng, C., "Highly Efficient and Mild Electrochemical Mineralization of Long-Chain Perfluorocarboxylic Acids (C9-C10) by $Ti/SnO_2-Sb-Ce$, $Ti/SnO_2-Sb/Ce-PbO_2$, and Ti/BDD Electrodes," Environ. Sci. Technol., 47(22), 13039-13046(2013). https://doi.org/10.1021/es4034414
  32. Weiss, E., Groenen-Serrano, K., Savall, A., "A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes," J. Appl. Electrochem., 38(3), 329-337(2008). https://doi.org/10.1007/s10800-007-9442-x
  33. Mindt, W., "Electrical Properties of Electrodeposited $PbO_2$ Films," J. Electrochem. Soc., 116(8), 1076-1080(1969). https://doi.org/10.1149/1.2412217
  34. Lichtfouse, E., Schwarzbauer, J. and Robert, D., Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution, 2012th edition, Springer Netherlands(2014).
  35. Zumdahl, S. S., Zumdahl, S. A., Chemistry: Media Enhanced Edition, 7th ed, Cengage Learning, Boston(2009).
  36. Li, S., Bejan, D., McDowell, M. S., and Bunce, N. J., "Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode," J. Appl. Electrochem., 38(2), 151-159(2008). https://doi.org/10.1007/s10800-007-9413-2
  37. von Gunten, U., "Ozonation of drinking water: Part I. Oxidation kinetics and product formation," Water Res., 37(7), 1443-1467(2003). https://doi.org/10.1016/S0043-1354(02)00457-8
  38. Michaud, P. A., Panizza, M., Ouattara, L., Diaco, T., Foti, G. and Comninellis, C., "Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes," J. Appl. Electrochem., 33(2), 151-154(2003). https://doi.org/10.1023/A:1024084924058
  39. Shen, P. K. and Wei, X. L., "Morphologic study of electrochemically formed lead dioxide," Electrochim. Acta., 48(12), 1743-1747(2003). https://doi.org/10.1016/S0013-4686(03)00149-X
  40. Yeo, I. H., Wen, S. and Mho, S. I., "Effect of Interfacial Oxides on the Electrochemical Activity of Lead Dioxide Film Electrodes on a Ti Substrate," Anal. Sci., 26(1), 39-44(2010). https://doi.org/10.2116/analsci.26.39
  41. Chen, Q., Ai, S., Li, S., Xu, J., Yin, H. and Ma, Q., "Facile preparation of $PbO_2$ electrode for the electrochemical inactivation of microorganisms," Electrochem. Commun., 11(11), 2233-2236(2009). https://doi.org/10.1016/j.elecom.2009.09.038
  42. Liu, H., Liu, Y., Zhang, C. and Shen, R., "Electrocatalytic oxidation of nitrophenols in aqueous solution using modified $PbO_2$ electrodes," J. Appl. Electrochem., 38(1), 101-108(2008). https://doi.org/10.1007/s10800-007-9406-1
  43. Liu, Y. and Liu, H., "Comparative studies on the electrocatalytic properties of modified $PbO_2$ anodes," Electrochim. Acta., 53(16), 5077-5083(2008). https://doi.org/10.1016/j.electacta.2008.02.103