참고문헌
- AFTES - WG7 (1993), "Considerations on the Usual Methods of Tunnel Lining Design", French Tunneling and Underground Engineering Association, Working Group No. 7 - Temporary Supports and Permanent Lining.
- Ahmet, G.C. (2010), "Evaluation of structural analysis methods used for the design of TBM segmental linings", Master's thesis, Middle East Technical University.
- An, J.S., Kim, B.C., Moon, H.K., Song, K.I., Su, G.S. (2016a), "DEA optimization for operating tunnel back analysis", Journal of Korean Tunn Undergr Sp Assoc, Vol. 18, No. 2, pp. 183-193. https://doi.org/10.9711/KTAJ.2016.18.2.183
- An, J.S., Kim, B.C., Moon, H.K., Song, K.I. (2016b), "Estimation of subsea tunnel stability considering ground and lining stiffness degradation measurements", Journal of Korean Tunn Undergr Sp Assoc, Vol. 18, No. 5, pp. 389-399. https://doi.org/10.9711/KTAJ.2016.18.5.389
- Arnau, O., Molins, C. (2012), "Three dimensional structural response of segmental tunnel linings", Engineering structures, Vol. 44, pp. 210-221. https://doi.org/10.1016/j.engstruct.2012.06.001
- Arnau, O., Molins, C., Blom, C. B. M., Walraven, J. C. (2012), "Longitudinal time-dependent response of segmental tunnel linings", Tunnelling and underground space technology, Vol. 28, pp. 98-108. https://doi.org/10.1016/j.tust.2011.10.002
- Barpi, F., Barbero, M., Peila, D. (2011), "Numerical modelling of ground-tunnel support interaction using bedded-beam-spring model with fuzzy parameters", Gospodarka Surowcami Mineralnymi, Vol. 27, pp. 71-87.
- JSCE (1996), "Japanese Standard for Shield Tunnelling, Japan Society of Civil Engineers", The third edition, Tokyo.
- Kawabata, K., Sakai, S., Deguchi, T., Sudo, T., Hori, N., Ishikawa, T. (2014), "Repair and Reinforcement Technology for Safe and Secure Concrete Structures that Have a Long Service Life", NTT Technical Review, Vol. 12, No. 10.
- Kim, J.W., Hong, E.S., Cho, G.C. (2016), "Assessment of elastic-wave propagation characteristics in groutingimproved rock mass around subsea tunnels", Journal of Korean Tunn Undergr Sp Assoc, Vol. 18, No. 2, pp. 235-244. https://doi.org/10.9711/KTAJ.2016.18.2.235
- Koyama, Y. (2003), "Present status and technology of shield tunneling method in Japan", Tunnelling and Underground Space Technology, Vol. 18, No. 2, pp. 145-159. https://doi.org/10.1016/S0886-7798(03)00040-3
- Li, X., Yan, Z., Wang, Z., Zhu, H. (2015), "A progressive model to simulate the full mechanical behavior of concrete segmental lining longitudinal joints", Engineering Structures, Vol. 93, pp. 97-113. https://doi.org/10.1016/j.engstruct.2015.03.011
- Nikkhah, M., Mousavi, S.S., Zare, S., Khademhosseini, O. (2016), "Evaluation of structural analysis of tunnel segmental lining using beam-spring method and force-method (Case study: Chamshir water conveyance tunnel)", Journal of Mining and Environment. (Published online: 27 May 2016)
- Storn, R., Price, K. (1997), "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359. https://doi.org/10.1023/A:1008202821328
- US Army Corps of Engineering (USACE) (1997), "Tunnels and shafts in rock", Engineering manual 1110-2-2901, Washington (USA).
- Woo, S.J., Yoo, C.S. (2015), "A study on the member forces of segmental linings considering key segments", Journal of Korean Tunn Undergr Sp Assoc, Vol. 17, No. 3, pp. 363-382. https://doi.org/10.9711/KTAJ.2015.17.3.363
- Wood M. (1975), "The Circular Tunnel in Elastic Ground", Geotechnique, Vol. 25, No. 1. pp. 115-127. https://doi.org/10.1680/geot.1975.25.1.115