DOI QR코드

DOI QR Code

단층대 지하수의 수리화학 및 노블가스 동위원소 특성

Hydrochemistry and Noble Gas Isotopes of Groundwaters around the Fault Zones

  • 정찬호 (대전대학교 건설안전방재공학과) ;
  • 최현영 (대전대학교 건설안전방재공학과) ;
  • 이용천 (대전대학교 건설안전방재공학과) ;
  • 이유진 (대전대학교 건설안전방재공학과) ;
  • 양재하 (국립환경과학원 토양지하수연구과)
  • Jeong, Chan Ho (Department of Construction Safety and Disaster Prevention) ;
  • Choi, Hyeon Young (Department of Construction Safety and Disaster Prevention) ;
  • Lee, Yong Cheon (Department of Construction Safety and Disaster Prevention) ;
  • Lee, Yu Jin (Department of Construction Safety and Disaster Prevention) ;
  • Yang, Jae Ha (Soil and Groundwater Research Division, National Institute of Environmental Research)
  • 투고 : 2016.12.02
  • 심사 : 2016.12.18
  • 발행 : 2016.12.30

초록

한반도 동남부에 발달된 양산단층과 감포지역 단층대에서 지하수의 순환에 대한 단층대의 영향을 알아보기 위하여 10개 암반 지하수를 채취하여 화학성분과 영족기체 동위원소 특성을 분석하였다. 분석결과 지하수의 화학적 유형은 $Ca-HCO_3$ 형에서 $Ca-SO_4(Cl)$ 형의 영역을 보이며, 지질과의 뚜렷한 상관성을 보이지 않는다. 영족기체인 $^3He/^4He$$4^He/^{20}Ne$ 동위원소비 상관관계도에서 1점을 제외한 지하수는 대기기원의 $^3He$가 우세하며, 이는 단층대를 통하여 강수의 지하수로 유입이 활발한 대수층 환경임을 지시한다. 아울러 단층대를 통한 심부의 헬륨공급이 없는 환경임을 시사한다. $^4He$의 비율이 비교적 높은 지하수는 물-암석반응이 상대적으로 충분한 대수층조건에서 암석기원의 $^4He$가 일부 기원되었음을 지시한다.

The chemical composition and noble gas isotopes of 10 deep groundwater samples were analyzed to know the circulation of groundwaters in the Yangsan fault and the Gampo fault. The chemical types of groundwaters show the $Ca-HCO_3$ type and $Ca-SO_4(Cl)$ type, and show indistinct relationship with geology. Noble gas isotopic data of most groundwaters were plotted along the air-crust mixing line on $^3He/^4He$ vs. $4^He/^{20}Ne$ diagram, and show dominant $^3He$ of air origin except one sample that shows helium mixing of crust origin. This indicates that groundwater actively circulates along fault, and fault could not play an role of upward pathway of a deep-seated helium gas. A comparatively high $^4He$ indicates that groundwater flows in an aquifer assuring relatively enough water-rock interaction.

키워드

참고문헌

  1. Aka, F. T., Kusakabe, M., Nagiouang, K., and Tanyileke, G., 2000, Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of bioko, Sotom and Annobon, along with Cameroon Volcanic Line, West Africa. Appl. Geochem., 16, 323-338.
  2. Ballentine, C. J. and Burnard, P. G., 2002, Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem, 47, 481-538. https://doi.org/10.2138/rmg.2002.47.12
  3. Craig, H., 1961, Isotopic variations in meteoric water, American for the Advancement of Science, 133(3465), 1702- 1703. https://doi.org/10.1126/science.133.3465.1702
  4. Drever, J.I., 1988, The Geochemistry of Natural Waters, Prentice- Hall Englewood Cliffs, N.J., 437.
  5. Government of South Australia, 2010, Technical Report, Groundwater flow across regional scale faults, Technical Report DFW 2010/15, 63.
  6. Graham, D. W., 2002, Noble gas isotope geochemistry of midoceanic ridge and ocean island basalts: characterization of mantle source reservoirs. Rev. Mineral. Geochem, 47, 247- 317. https://doi.org/10.2138/rmg.2002.47.8
  7. Green, G., Banks, E., Wilson, T., and Love, A., 2007, Grouneater recharge and flow investigation in the Western Mount Lofty Ranges, South Australia, DWLBC Report 2007/29, Government of South Australia, through Department of Water, Land and Biodiversity Conservation, Adelaide.
  8. Kim, D. H., Hwang, J. H., Park, K. H., and Song, K. Y., 1998, Geological report of the Busan sheet (scale: 1:250,000), Korea Institute of Geoscience and Mineral Resources.
  9. Kipfer, R., Aeschbah-Herting, W., Peeters, F., and Stute, M. 2002, Noble gases in the continental crust, Rev, Mineral, Geochem, 47, 615-700. https://doi.org/10.2138/rmg.2002.47.14
  10. Ozima, M. and Podosek, F. A., 2002, Noble Gas Geochemistry 2nd edition. Cambridge Univ. Press, Cambridge, 286.
  11. Paces, T., 1972, Steady-state kinetics and equilibrium between ground water and grnitic rock, Geochimica Cosmochimica Acta, 37, 2641-2663.
  12. Piper, A. M., 1994, A Graphic procedure in the geochemical interpretation of Water-analyses, Transactions, American Geophysical Union, 25, 914-928.
  13. Tardy, Y., 1971, Characterization of the principle weathering types by the geochemistry of waters from some European and African crystalline massifs, Chemical Geology, 7, 253- 271. https://doi.org/10.1016/0009-2541(71)90011-8
  14. Velbel, M. A., 1985, Geochemical mass balaces and weathering rates in forested watersheds of the sothern Blue Ridge, Am. J. Sci., 285, 904-930. https://doi.org/10.2475/ajs.285.10.904
  15. Velbel, M. A., 1989, Weathering of hornblende to ferruginous products by a dissolution-reprecipitation mechanism: Petrography and Stochiometry, Clays Clay Mineral., 37, 515-524. https://doi.org/10.1346/CCMN.1989.0370603
  16. Velbel, M. A., 1992, Geochemical mass balaces and weathering rates in forested watersheds of the sothern Blue Ridge, III, Cation budgets and the weathering rate of amphibole, Am. J. Sci., 292, 58-78. https://doi.org/10.2475/ajs.292.1.58